Nuprl Lemma : bag-union-is-single

[T:Type]. ∀[x:T].
  ∀bbs:bag(bag(T))
    uiff(bag-union(bbs) {x} ∈ bag(T);↓∃bbs':bag(bag(T))
                                         ((bbs {x}.bbs' ∈ bag(bag(T))) ∧ (bag-union(bbs') {} ∈ bag(T))))


Proof




Definitions occuring in Statement :  bag-union: bag-union(bbs) cons-bag: x.b single-bag: {x} empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: exists: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B single-bag: {x} bag-union: bag-union(bbs) concat: concat(ll) bag: bag(T) quotient: x,y:A//B[x; y] cand: c∧ B true: True bag-append: as bs cons-bag: x.b iff: ⇐⇒ Q rev_implies:  Q respects-equality: respects-equality(S;T) reduce: reduce(f;k;as) list_ind: list_ind append: as bs empty-bag: {} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  bag_wf bag-union_wf single-bag_wf squash_wf equal_wf cons-bag_wf equal-wf-T-base istype-universe bag_to_squash_list nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-false istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf cons_wf list-subtype-bag istype-nat reduce_nil_lemma permutation-length length_of_nil_lemma length_of_cons_lemma permutation_wf concat-cons2 bag-append-is-single-iff true_wf subtype_rel_self iff_weakening_equal subtype-respects-equality list_ind_cons_lemma list_ind_nil_lemma bag-append-assoc-comm bag-append-empty bag-subtype-list bag-append_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed equalityIstype universeIsType extract_by_obid isectElimination dependent_functionElimination productEquality lambdaEquality_alt productElimination independent_pairEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType axiomEquality functionIsTypeImplies instantiate universeEquality promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality equalityTransitivity rename setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality voidElimination unionElimination sqequalBase hypothesis_subsumption because_Cache dependent_set_memberEquality_alt baseApply closedConclusion applyEquality intEquality pertypeElimination cumulativity productIsType

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].
    \mforall{}bbs:bag(bag(T))
        uiff(bag-union(bbs)  =  \{x\};\mdownarrow{}\mexists{}bbs':bag(bag(T)).  ((bbs  =  \{x\}.bbs')  \mwedge{}  (bag-union(bbs')  =  \{\})))



Date html generated: 2019_10_15-AM-11_00_22
Last ObjectModification: 2018_11_30-AM-09_57_39

Theory : bags


Home Index