Nuprl Lemma : bag-remove-size
∀[T:Type]
∀eq:EqDecider(T). ∀bs:bag(T). ∀x:T.
((x ↓∈ bs ∧ (#(bs - x) = (#(bs) - (#x in bs)) ∈ ℤ)) ∨ ((¬x ↓∈ bs) ∧ (#(bs - x) = #(bs) ∈ ℤ)))
Proof
Definitions occuring in Statement :
bag-remove: bs - x
,
bag-count: (#x in bs)
,
bag-member: x ↓∈ bs
,
bag-size: #(bs)
,
bag: bag(T)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
or: P ∨ Q
,
and: P ∧ Q
,
subtract: n - m
,
int: ℤ
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
and: P ∧ Q
,
cand: A c∧ B
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
guard: {T}
,
squash: ↓T
,
uimplies: b supposing a
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
bag-count: (#x in bs)
,
bag-size: #(bs)
,
bag-remove: bs - x
,
bag-filter: [x∈b|p[x]]
,
count: count(P;L)
,
so_lambda: λ2x.t[x]
,
deq: EqDecider(T)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
eqof: eqof(d)
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
so_apply: x[s]
,
top: Top
,
subtract: n - m
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :
bag_wf,
deq_wf,
decidable__bag-member,
decidable-equal-deq,
not_wf,
bag-member_wf,
equal_wf,
bag-size_wf,
bag-remove_wf,
nat_wf,
squash_wf,
true_wf,
bag-remove-trivial,
iff_weakening_equal,
subtract_wf,
bag-count_wf,
bag_to_squash_list,
bag-member-list,
list_induction,
all_wf,
length_wf,
filter_wf5,
l_member_wf,
bnot_wf,
reduce_wf,
bool_wf,
eqtt_to_assert,
safe-assert-deq,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
list_wf,
filter_nil_lemma,
length_of_nil_lemma,
reduce_nil_lemma,
filter_cons_lemma,
length_of_cons_lemma,
reduce_cons_lemma,
int_subtype_base,
decidable__equal_int,
ifthenelse_wf,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermSubtract_wf,
itermAdd_wf,
itermVar_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
add_functionality_wrt_eq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
hypothesisEquality,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesis,
universeEquality,
independent_functionElimination,
because_Cache,
dependent_functionElimination,
unionElimination,
inlFormation,
independent_pairFormation,
productEquality,
intEquality,
applyEquality,
lambdaEquality,
setElimination,
rename,
sqequalRule,
inrFormation,
imageElimination,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
productElimination,
promote_hyp,
hyp_replacement,
applyLambdaEquality,
setEquality,
addEquality,
equalityElimination,
dependent_pairFormation,
instantiate,
voidElimination,
isect_memberEquality,
voidEquality,
int_eqEquality,
computeAll
Latex:
\mforall{}[T:Type]
\mforall{}eq:EqDecider(T). \mforall{}bs:bag(T). \mforall{}x:T.
((x \mdownarrow{}\mmember{} bs \mwedge{} (\#(bs - x) = (\#(bs) - (\#x in bs)))) \mvee{} ((\mneg{}x \mdownarrow{}\mmember{} bs) \mwedge{} (\#(bs - x) = \#(bs))))
Date html generated:
2018_05_21-PM-09_47_52
Last ObjectModification:
2017_07_26-PM-06_30_27
Theory : bags_2
Home
Index