Nuprl Lemma : find-hd-filter

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[as:T List]. ∀[d:Top].
  (first a ∈ as s.t. P[a] else d) hd(filter(λa.P[a];as)) ∈ supposing ∃a:T. ((a ∈ as) ∧ (↑P[a]))


Proof




Definitions occuring in Statement :  find: (first x ∈ as s.t. P[x] else d) l_member: (x ∈ l) hd: hd(l) filter: filter(P;l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] exists: x:A. B[x] and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} or: P ∨ Q find: (first x ∈ as s.t. P[x] else d) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff cand: c∧ B iff: ⇐⇒ Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf exists_wf l_member_wf assert_wf top_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma list_ind_nil_lemma nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma cons_wf list_wf bool_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse list_ind_cons_lemma reduce_hd_cons_lemma bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot cons_member assert_elim not_assert_elim and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity productEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionEquality universeEquality equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as:T  List].  \mforall{}[d:Top].
    (first  a  \mmember{}  as  s.t.  P[a]  else  d)  =  hd(filter(\mlambda{}a.P[a];as))  supposing  \mexists{}a:T.  ((a  \mmember{}  as)  \mwedge{}  (\muparrow{}P[a]))



Date html generated: 2018_05_21-PM-06_50_59
Last ObjectModification: 2017_07_26-PM-04_57_36

Theory : general


Home Index