Nuprl Lemma : find-hd-filter
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[as:T List]. ∀[d:Top].
  (first a ∈ as s.t. P[a] else d) = hd(filter(λa.P[a];as)) ∈ T supposing ∃a:T. ((a ∈ as) ∧ (↑P[a]))
Proof
Definitions occuring in Statement : 
find: (first x ∈ as s.t. P[x] else d)
, 
l_member: (x ∈ l)
, 
hd: hd(l)
, 
filter: filter(P;l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
find: (first x ∈ as s.t. P[x] else d)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
exists_wf, 
l_member_wf, 
assert_wf, 
top_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
filter_nil_lemma, 
list_ind_nil_lemma, 
nil_wf, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
filter_cons_lemma, 
cons_wf, 
list_wf, 
bool_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
list_ind_cons_lemma, 
reduce_hd_cons_lemma, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
cons_member, 
assert_elim, 
not_assert_elim, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
productEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
instantiate, 
imageElimination, 
functionEquality, 
universeEquality, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as:T  List].  \mforall{}[d:Top].
    (first  a  \mmember{}  as  s.t.  P[a]  else  d)  =  hd(filter(\mlambda{}a.P[a];as))  supposing  \mexists{}a:T.  ((a  \mmember{}  as)  \mwedge{}  (\muparrow{}P[a]))
Date html generated:
2018_05_21-PM-06_50_59
Last ObjectModification:
2017_07_26-PM-04_57_36
Theory : general
Home
Index