Nuprl Lemma : int-list-index_wf

[x:ℤ]. ∀[L:ℤ List].  (int-list-index(L;x) ∈ ℕ||L|| 1)


Proof




Definitions occuring in Statement :  int-list-index: int-list-index(L;x) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q int-list-index: int-list-index(L;x) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b subtract: m nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-base nat_wf list_subtype_base int_subtype_base less_than_transitivity1 less_than_irreflexivity list-cases length_of_nil_lemma list_ind_nil_lemma false_wf lelt_wf product_subtype_list spread_cons_lemma colength_wf_list intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal-wf-T-base decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base decidable__equal_int length_of_cons_lemma list_ind_cons_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int non_neg_length int_seg_properties length_wf decidable__lt eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg2 int_seg_wf int_seg_subtype add-is-int-iff list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality because_Cache unionElimination dependent_set_memberEquality imageMemberEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality addEquality instantiate cumulativity imageElimination equalityElimination pointwiseFunctionality

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[L:\mBbbZ{}  List].    (int-list-index(L;x)  \mmember{}  \mBbbN{}||L||  +  1)



Date html generated: 2018_05_21-PM-07_32_15
Last ObjectModification: 2017_07_26-PM-05_07_24

Theory : general


Home Index