Nuprl Lemma : int_mod_ring_wf_field

[p:ℕ+]. int_mod_ring(p) ∈ Field{i} supposing prime(p)


Proof




Definitions occuring in Statement :  int_mod_ring: int_mod_ring(n) prime: prime(a) nat_plus: + uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T field: Field{i}
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a field: Field{i} subtype_rel: A ⊆B crng: CRng rng: Rng prop: nat_plus: + int_mod_ring: int_mod_ring(n) field_p: IsField(r) rng_car: |r| pi1: fst(t) rng_zero: 0 pi2: snd(t) rng_one: 1 ring_divs: in r rng_times: * infix_ap: y and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A int_mod: _n quotient: x,y:A//B[x; y] false: False eqmod: a ≡ mod m divides: a exists: x:A. B[x] prime: prime(a) assoced: b decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtract: m so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} guard: {T} le: A ≤ B less_than': less_than'(a;b) lelt: i ≤ j < k so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_mod_ring_wf cdrng_subtype_crng field_p_wf prime_wf nat_plus_wf nequal_wf int_mod_wf int-subtype-int_mod istype-int eqmod_wf nat_plus_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermConstant_wf itermMultiply_wf itermVar_wf itermMinus_wf itermSubtract_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_term_value_minus_lemma int_term_value_subtract_lemma int_formula_prop_wf int_subtype_base set_subtype_base less_than_wf one_divs_any modulus-int_mod-nonzero gcd-reduce-prime modulus_wf_int_mod divisors_bound nat_plus_subtype_nat int_seg_subtype_nat_plus istype-false divides_wf int_seg_properties intformle_wf intformless_wf int_formula_prop_le_lemma int_formula_prop_less_lemma le_wf quotient-member-eq eqmod_equiv_rel subtype_rel_self mod-eqmod eqmod_inversion squash_wf true_wf modulus_functionality_wrt_eqmod iff_weakening_equal multiply_wf_int_mod equal_wf istype-universe itermAdd_wf int_term_value_add_lemma subtract_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule universeIsType setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt because_Cache independent_pairFormation lambdaFormation_alt natural_numberEquality equalityIsType4 baseClosed pertypeElimination productElimination productIsType inhabitedIsType independent_functionElimination dependent_pairFormation_alt minusEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation lambdaEquality_alt int_eqEquality voidElimination baseApply closedConclusion intEquality applyLambdaEquality equalityIsType1 pointwiseFunctionalityForEquality imageElimination imageMemberEquality instantiate universeEquality multiplyEquality equalityIsType3

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  int\_mod\_ring(p)  \mmember{}  Field\{i\}  supposing  prime(p)



Date html generated: 2019_10_15-AM-11_38_23
Last ObjectModification: 2018_10_10-AM-11_03_17

Theory : general


Home Index