Nuprl Lemma : l-ordered-insert-combine

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀cmp:comparison(T). ∀f:T ⟶ T ⟶ T. ∀x:T.
  ((∀u,x,y:T.  (R[u;x]  R[x;y]  R[u;y]))
   (∀u,x,y:T.  (((cmp u) 0 ∈ ℤ R[x;y]  R[u;y]))
   (∀u,x,y:T.  (((cmp u) 0 ∈ ℤ R[x;y]  R[x;u]))
   (∀u,x:T.  (((cmp u) 0 ∈ ℤ ((cmp (f u)) 0 ∈ ℤ)))
   (∀x,y:T.  (0 < cmp  R[x;y]))
   (∀L:T List. (l-ordered(T;x,y.R[x;y];L)  l-ordered(T;x,y.R[x;y];insert-combine(cmp;f;x;L)))))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) insert-combine: insert-combine(cmp;f;x;l) comparison: comparison(T) list: List less_than: a < b prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] comparison: comparison(T) and: P ∧ Q cand: c∧ B true: True false: False iff: ⇐⇒ Q rev_implies:  Q top: Top has-value: (a)↓ uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b not: ¬A nequal: a ≠ b ∈  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  list_induction l-ordered_wf insert-combine_wf list_wf all_wf less_than_wf equal-wf-T-base comparison_wf false_wf true_wf l-ordered-nil-true nil_member l_member_wf nil_wf l-ordered-cons insert-combine-nil value-type-has-value int-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int cons_wf insert-combine-cons cons_member and_wf member-insert-combine decidable__lt minus-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermMinus_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_minus_lemma int_formula_prop_wf l_exists_iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality functionEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis dependent_functionElimination independent_functionElimination rename natural_numberEquality setElimination intEquality baseClosed universeEquality independent_pairFormation voidElimination addLevel impliesFunctionality productElimination allFunctionality productEquality isect_memberEquality voidEquality callbyvalueReduce independent_isectElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate hyp_replacement dependent_set_memberEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion int_eqEquality computeAll setEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}cmp:comparison(T).  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}x:T.
    ((\mforall{}u,x,y:T.    (R[u;x]  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[u;y]))
    {}\mRightarrow{}  (\mforall{}u,x,y:T.    (((cmp  x  u)  =  0)  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[u;y]))
    {}\mRightarrow{}  (\mforall{}u,x,y:T.    (((cmp  y  u)  =  0)  {}\mRightarrow{}  R[x;y]  {}\mRightarrow{}  R[x;u]))
    {}\mRightarrow{}  (\mforall{}u,x:T.    (((cmp  x  u)  =  0)  {}\mRightarrow{}  ((cmp  u  (f  x  u))  =  0)))
    {}\mRightarrow{}  (\mforall{}x,y:T.    (0  <  cmp  x  y  {}\mRightarrow{}  R[x;y]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  (l-ordered(T;x,y.R[x;y];L)  {}\mRightarrow{}  l-ordered(T;x,y.R[x;y];insert-combine(cmp;f;x;L)))))



Date html generated: 2018_05_21-PM-07_38_01
Last ObjectModification: 2017_07_26-PM-05_12_17

Theory : general


Home Index