Nuprl Lemma : member-insert-combine
∀T:Type. ∀cmp:comparison(T). ∀f:T ⟶ T ⟶ T. ∀x,z:T. ∀v:T List.
  ((z ∈ insert-combine(cmp;f;x;v)) 
⇒ ((z ∈ v) ∨ (z = x ∈ T) ∨ (∃y∈v. ((cmp x y) = 0 ∈ ℤ) ∧ (z = (f x y) ∈ T))))
Proof
Definitions occuring in Statement : 
insert-combine: insert-combine(cmp;f;x;l)
, 
comparison: comparison(T)
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
comparison: comparison(T)
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
insert-combine: insert-combine(cmp;f;x;l)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
l_exists: (∃x∈L. P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
cand: A c∧ B
, 
nequal: a ≠ b ∈ T 
, 
subtract: n - m
, 
ge: i ≥ j 
Lemmas referenced : 
list_induction, 
l_member_wf, 
insert-combine_wf, 
or_wf, 
equal_wf, 
l_exists_wf, 
equal-wf-T-base, 
list_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
comparison_wf, 
l_exists_wf_nil, 
and_wf, 
nil_wf, 
member_singleton, 
cons_wf, 
value-type-has-value, 
int-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
cons_member, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
less_than_wf, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
length_wf, 
select-cons-hd, 
select_wf, 
int_seg_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
select-cons-tl, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
productEquality, 
intEquality, 
baseClosed, 
setEquality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
inrFormation, 
inlFormation, 
addLevel, 
impliesFunctionality, 
productElimination, 
callbyvalueReduce, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
hyp_replacement, 
applyLambdaEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
int_eqEquality, 
computeAll, 
addEquality, 
imageElimination
Latex:
\mforall{}T:Type.  \mforall{}cmp:comparison(T).  \mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T.  \mforall{}x,z:T.  \mforall{}v:T  List.
    ((z  \mmember{}  insert-combine(cmp;f;x;v))  {}\mRightarrow{}  ((z  \mmember{}  v)  \mvee{}  (z  =  x)  \mvee{}  (\mexists{}y\mmember{}v.  ((cmp  x  y)  =  0)  \mwedge{}  (z  =  (f  x  y)))))
Date html generated:
2017_04_17-AM-08_29_04
Last ObjectModification:
2017_02_27-PM-04_50_55
Theory : list_1
Home
Index