Nuprl Lemma : special-mod4-decomp-unique
∀m:ℤ. ∃!k:ℤ. ∃b:{-2..3-}. ((m = ((4 * k) + b) ∈ ℤ) ∧ ((|b| = 2 ∈ ℤ) 
⇒ (↑isEven(k))))
Proof
Definitions occuring in Statement : 
isEven: isEven(n)
, 
absval: |i|
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
exists!: ∃!x:T. P[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
exists!: ∃!x:T. P[x]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
divides: b | a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
sq_type: SQType(T)
, 
subtract: n - m
, 
absval: |i|
, 
uiff: uiff(P;Q)
, 
same-parity: same-parity(n;m)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
isEven: isEven(n)
, 
modulus: a mod n
, 
eq_int: (i =z j)
, 
assert: ↑b
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
set_wf, 
int_seg_wf, 
equal-wf-base, 
int_subtype_base, 
set_subtype_base, 
lelt_wf, 
assert_wf, 
isEven_wf, 
special-mod4-decomp_wf, 
set-value-type, 
equal_wf, 
product-value-type, 
istype-int, 
assert_witness, 
subtract_wf, 
int_seg_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
subtype_base_sq, 
isEven-add, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
decidable__le, 
decidable__lt, 
le_wf, 
less_than_wf, 
divides_iff_rem_zero, 
nequal_wf, 
int_seg_subtype_special, 
int_seg_cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
intEquality, 
minusEquality, 
natural_numberEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
inhabitedIsType, 
independent_isectElimination, 
functionEquality, 
because_Cache, 
productIsType, 
universeIsType, 
cutEval, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIsType1, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
independent_pairFormation, 
independent_functionElimination, 
equalityIsType4, 
functionIsType, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
instantiate, 
cumulativity, 
promote_hyp, 
callbyvalueReduce, 
sqleReflexivity, 
hypothesis_subsumption, 
applyLambdaEquality
Latex:
\mforall{}m:\mBbbZ{}.  \mexists{}!k:\mBbbZ{}.  \mexists{}b:\{-2..3\msupminus{}\}.  ((m  =  ((4  *  k)  +  b))  \mwedge{}  ((|b|  =  2)  {}\mRightarrow{}  (\muparrow{}isEven(k))))
Date html generated:
2019_10_15-AM-11_26_53
Last ObjectModification:
2018_10_09-PM-00_14_32
Theory : general
Home
Index