Nuprl Lemma : transitive-loop2

[T:Type]
  ∀L:T List
    ∀[R:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)}  ⟶ ℙ]
      (Trans({x:T| (x ∈ L)} ;x,y.R[x;y])
       (∀i:ℕ||L|| 1. R[L[i];L[i 1]])
       R[last(L);hd(L)] supposing ¬↑null(L)
       (∀a∈L.(∀b∈L.R[a;b])))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) last: last(L) l_member: (x ∈ l) select: L[n] hd: hd(l) length: ||as|| null: null(as) list: List trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: uimplies: supposing a subtype_rel: A ⊆B top: Top so_lambda: λ2x.t[x] so_apply: x[s1;s2] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A true: True false: False cons: [a b] bfalse: ff guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) listp: List+ so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T so_lambda: λ2y.t[x; y]
Lemmas referenced :  transitive-loop l_member_wf list-subtype isect_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf last_wf hd_wf listp_properties list-cases length_of_nil_lemma null_nil_lemma product_subtype_list length_of_cons_lemma null_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf all_wf int_seg_wf subtract_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma trans_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setEquality cumulativity hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination because_Cache equalityTransitivity equalitySymmetry applyEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule functionExtensionality unionElimination natural_numberEquality promote_hyp hypothesis_subsumption productElimination setElimination rename addEquality independent_pairFormation intEquality minusEquality dependent_set_memberEquality dependent_pairFormation int_eqEquality computeAll pointwiseFunctionality imageElimination baseApply closedConclusion baseClosed functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            (Trans(\{x:T|  (x  \mmember{}  L)\}  ;x,y.R[x;y])
            {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||L||  -  1.  R[L[i];L[i  +  1]])
            {}\mRightarrow{}  R[last(L);hd(L)]  supposing  \mneg{}\muparrow{}null(L)
            {}\mRightarrow{}  (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.R[a;b])))



Date html generated: 2018_05_21-PM-07_41_13
Last ObjectModification: 2017_07_26-PM-05_15_13

Theory : general


Home Index