Nuprl Lemma : transitive-loop2
∀[T:Type]
  ∀L:T List
    ∀[R:{x:T| (x ∈ L)}  ⟶ {x:T| (x ∈ L)}  ⟶ ℙ]
      (Trans({x:T| (x ∈ L)} x,y.R[x;y])
      ⇒ (∀i:ℕ||L|| - 1. R[L[i];L[i + 1]])
      ⇒ R[last(L);hd(L)] supposing ¬↑null(L)
      ⇒ (∀a∈L.(∀b∈L.R[a;b])))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
last: last(L), 
l_member: (x ∈ l), 
select: L[n], 
hd: hd(l), 
length: ||as||, 
null: null(as), 
list: T List, 
trans: Trans(T;x,y.E[x; y]), 
int_seg: {i..j-}, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
not: ¬A, 
true: True, 
false: False, 
cons: [a / b], 
bfalse: ff, 
guard: {T}, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
less_than': less_than'(a;b), 
listp: A List+, 
so_apply: x[s], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
less_than: a < b, 
squash: ↓T, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
transitive-loop, 
l_member_wf, 
list-subtype, 
isect_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
last_wf, 
hd_wf, 
listp_properties, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
null_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
length_wf, 
all_wf, 
int_seg_wf, 
subtract_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
trans_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
functionExtensionality, 
unionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
setElimination, 
rename, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
pointwiseFunctionality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List
        \mforall{}[R:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}]
            (Trans(\{x:T|  (x  \mmember{}  L)\}  ;x,y.R[x;y])
            {}\mRightarrow{}  (\mforall{}i:\mBbbN{}||L||  -  1.  R[L[i];L[i  +  1]])
            {}\mRightarrow{}  R[last(L);hd(L)]  supposing  \mneg{}\muparrow{}null(L)
            {}\mRightarrow{}  (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.R[a;b])))
Date html generated:
2018_05_21-PM-07_41_13
Last ObjectModification:
2017_07_26-PM-05_15_13
Theory : general
Home
Index