Nuprl Lemma : transitive-loop
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R[x;y])
  
⇒ (∀L:T List. ((∀i:ℕ||L|| - 1. R[L[i];L[i + 1]]) 
⇒ R[last(L);hd(L)] supposing ¬↑null(L) 
⇒ (∀a∈L.(∀b∈L.R[a;b])))))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
last: last(L)
, 
select: L[n]
, 
hd: hd(l)
, 
length: ||as||
, 
null: null(as)
, 
list: T List
, 
trans: Trans(T;x,y.E[x; y])
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
uimplies: b supposing a
, 
not: ¬A
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
listp: A List+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
sq_type: SQType(T)
, 
ge: i ≥ j 
, 
trans: Trans(T;x,y.E[x; y])
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
last: last(L)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
list-cases, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
product_subtype_list, 
null_cons_lemma, 
false_wf, 
l_member_wf, 
l_all_iff, 
l_all_wf2, 
all_wf, 
isect_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
last_wf, 
hd_wf, 
listp_properties, 
length_of_nil_lemma, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
length_wf, 
int_seg_wf, 
subtract_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtract-is-int-iff, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
list_wf, 
trans_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
subtype_rel_self, 
set_wf, 
primrec-wf2, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
lelt_wf, 
add-member-int_seg2, 
le_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
add-swap, 
add-mul-special, 
zero-mul, 
stuck-spread, 
base_wf, 
reduce_hd_cons_lemma, 
select0, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
levelHypothesis, 
allLevelFunctionality, 
impliesLevelFunctionality, 
functionEquality, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
addEquality, 
independent_pairFormation, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
pointwiseFunctionality, 
imageElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
universeEquality, 
instantiate, 
hyp_replacement, 
imageMemberEquality, 
productEquality, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}L:T  List
                ((\mforall{}i:\mBbbN{}||L||  -  1.  R[L[i];L[i  +  1]])
                {}\mRightarrow{}  R[last(L);hd(L)]  supposing  \mneg{}\muparrow{}null(L)
                {}\mRightarrow{}  (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.R[a;b])))))
Date html generated:
2018_05_21-PM-07_41_04
Last ObjectModification:
2018_05_19-PM-04_48_32
Theory : general
Home
Index