Nuprl Lemma : transitive-loop

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (Trans(T;x,y.R[x;y])
   (∀L:T List. ((∀i:ℕ||L|| 1. R[L[i];L[i 1]])  R[last(L);hd(L)] supposing ¬↑null(L)  (∀a∈L.(∀b∈L.R[a;b])))))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) last: last(L) select: L[n] hd: hd(l) length: ||as|| null: null(as) list: List trans: Trans(T;x,y.E[x; y]) int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt uimplies: supposing a not: ¬A false: False cons: [a b] top: Top bfalse: ff prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B true: True guard: {T} nat: le: A ≤ B decidable: Dec(P) uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) listp: List+ int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] less_than: a < b squash: T so_lambda: λ2y.t[x; y] sq_type: SQType(T) ge: i ≥  trans: Trans(T;x,y.E[x; y]) l_member: (x ∈ l) cand: c∧ B last: last(L) select: L[n] nil: [] it:
Lemmas referenced :  list-cases null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse product_subtype_list null_cons_lemma false_wf l_member_wf l_all_iff l_all_wf2 all_wf isect_wf not_wf assert_wf null_wf3 subtype_rel_list top_wf last_wf hd_wf listp_properties length_of_nil_lemma length_of_cons_lemma length_wf_nat nat_wf decidable__lt not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf int_seg_wf subtract_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf subtract-is-int-iff intformless_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma list_wf trans_wf decidable__equal_int subtype_base_sq int_subtype_base subtype_rel_self set_wf primrec-wf2 nat_properties intformeq_wf int_formula_prop_eq_lemma lelt_wf add-member-int_seg2 le_wf squash_wf true_wf iff_weakening_equal add-swap add-mul-special zero-mul stuck-spread base_wf reduce_hd_cons_lemma select0 and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality addLevel allFunctionality impliesFunctionality because_Cache lambdaEquality applyEquality setElimination rename setEquality levelHypothesis allLevelFunctionality impliesLevelFunctionality functionEquality functionExtensionality cumulativity natural_numberEquality addEquality independent_pairFormation intEquality minusEquality dependent_set_memberEquality approximateComputation dependent_pairFormation int_eqEquality pointwiseFunctionality imageElimination baseApply closedConclusion baseClosed universeEquality instantiate hyp_replacement imageMemberEquality productEquality applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (Trans(T;x,y.R[x;y])
    {}\mRightarrow{}  (\mforall{}L:T  List
                ((\mforall{}i:\mBbbN{}||L||  -  1.  R[L[i];L[i  +  1]])
                {}\mRightarrow{}  R[last(L);hd(L)]  supposing  \mneg{}\muparrow{}null(L)
                {}\mRightarrow{}  (\mforall{}a\mmember{}L.(\mforall{}b\mmember{}L.R[a;b])))))



Date html generated: 2018_05_21-PM-07_41_04
Last ObjectModification: 2018_05_19-PM-04_48_32

Theory : general


Home Index