Nuprl Lemma : swap-exists
∀n:ℕ. ∀AType:array{i:l}(ℤ;n).  ∃prog:ℕn ⟶ ℕn ⟶ (A-map Unit). ∀[i,j:ℕn].  alt-swap-spec(AType;n;prog)
Proof
Definitions occuring in Statement : 
alt-swap-spec: alt-swap-spec(AType;n;prog), 
A-map: A-map, 
array-model: array-model(AType), 
array: array{i:l}(Val;n), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
nat: ℕ, 
alt-swap-spec: alt-swap-spec(AType;n;prog), 
and: P ∧ Q, 
implies: P ⇒ Q, 
array: array{i:l}(Val;n), 
simple-swap: simple-swap(AModel;i;j), 
A-pre-val: A-pre-val(AType;A;i), 
A-post-val: A-post-val(AType;prog;A;i), 
idx: idx(AType), 
array-model: array-model(AType), 
A-fetch': A-fetch'(AModel), 
A-coerce: A-coerce(AModel), 
A-assign: A-assign(AModel), 
A-bind: A-bind(AModel), 
A-eval: A-eval(AModel), 
Arr: Arr(AType), 
pi1: fst(t), 
pi2: snd(t), 
upd: upd(AType), 
array-monad: array-monad(AType), 
M-bind: M-bind(Mnd), 
let: let, 
mk_monad: mk_monad(M;return;bind), 
cand: A c∧ B, 
not: ¬A, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
false: False, 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
ge: i ≥ j , 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P)
Lemmas referenced : 
array_wf, 
nat_wf, 
simple-swap_wf, 
int_seg_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
istype-void, 
istype-universe, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
istype-int, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
equal-wf-base, 
assert_wf, 
decidable__equal_int, 
bnot_wf, 
not_wf, 
assert_elim, 
eq_int_eq_true, 
bfalse_wf, 
btrue_neq_bfalse, 
uiff_transitivity, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
subtype_rel-equal, 
base_wf, 
alt-swap-spec_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesisEquality, 
hypothesis, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
inhabitedIsType, 
natural_numberEquality, 
setElimination, 
rename, 
isect_memberFormation_alt, 
sqequalRule, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
because_Cache, 
isectIsType, 
independent_pairFormation, 
productIsType, 
functionIsType, 
equalityIsType4, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
closedConclusion, 
independent_isectElimination, 
unionElimination, 
equalityElimination, 
equalityIsType2, 
baseApply, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
approximateComputation, 
int_eqEquality, 
equalityIsType1, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}AType:array\{i:l\}(\mBbbZ{};n).
    \mexists{}prog:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  (A-map  Unit).  \mforall{}[i,j:\mBbbN{}n].    alt-swap-spec(AType;n;prog)
Date html generated:
2019_10_15-AM-10_59_39
Last ObjectModification:
2018_10_11-PM-06_53_12
Theory : monads
Home
Index