Nuprl Lemma : q-Cauchy-Schwarz

[n:ℕ]. ∀[x,y:ℕ1 ⟶ ℚ].
  ((Σ0 ≤ i < n. x[i] y[i] * Σ0 ≤ i < n. x[i] y[i]) ≤ 0 ≤ i < n. x[i] x[i] * Σ0 ≤ i < n. y[i] y[i]))


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s qmul: s rationals: int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bnot: ¬bb bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) guard: {T} le: A ≤ B less_than: a < b squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qmul_ident qmul_zero_qrng mon_ident_q qadd_preserves_qle q_distrib qadd_ac_1_q qadd_comm_q mon_assoc_q qinv_inv_q qmul_comm_qrng qmul_ac_1_qrng qmul_assoc_qrng qmul_over_minus_qrng qmul_over_plus_qrng qsub_wf q-square-non-neg le_wf int_formula_prop_le_lemma intformle_wf qsum_functionality_wrt_qle qsum-linearity2 qsum-linearity1 iff_weakening_equal qsum_product true_wf squash_wf qle_wf qadd_wf int_seg_properties nat_wf rationals_wf int_seg_wf lelt_wf qle_witness int-subtype-rationals int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties qsum_wf qmul_wf qmul_preserves_qle
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality productElimination independent_pairFormation hypothesis hypothesisEquality dependent_functionElimination addEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination functionEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality lambdaFormation minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbQ{}].
    ((\mSigma{}0  \mleq{}  i  <  n.  x[i]  *  y[i]  *  \mSigma{}0  \mleq{}  i  <  n.  x[i]  *  y[i])  \mleq{}  (\mSigma{}0  \mleq{}  i  <  n.  x[i]  *  x[i]
    *  \mSigma{}0  \mleq{}  i  <  n.  y[i]  *  y[i]))



Date html generated: 2016_05_15-PM-11_12_22
Last ObjectModification: 2016_01_16-PM-09_23_24

Theory : rationals


Home Index