Nuprl Lemma : q-Cauchy-Schwarz
∀[n:ℕ]. ∀[x,y:ℕn + 1 ⟶ ℚ].
((Σ0 ≤ i < n. x[i] * y[i] * Σ0 ≤ i < n. x[i] * y[i]) ≤ (Σ0 ≤ i < n. x[i] * x[i] * Σ0 ≤ i < n. y[i] * y[i]))
Proof
Definitions occuring in Statement :
qsum: Σa ≤ j < b. E[j]
,
qle: r ≤ s
,
qmul: r * s
,
rationals: ℚ
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
nat: ℕ
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
qless: r < s
,
grp_lt: a < b
,
set_lt: a <p b
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
set_blt: a <b b
,
band: p ∧b q
,
infix_ap: x f y
,
set_le: ≤b
,
pi2: snd(t)
,
oset_of_ocmon: g↓oset
,
dset_of_mon: g↓set
,
grp_le: ≤b
,
pi1: fst(t)
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
qadd: r + s
,
qmul: r * s
,
btrue: tt
,
lt_int: i <z j
,
bnot: ¬bb
,
bfalse: ff
,
qeq: qeq(r;s)
,
eq_int: (i =z j)
,
true: True
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
guard: {T}
,
le: A ≤ B
,
less_than: a < b
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
qmul_ident,
qmul_zero_qrng,
mon_ident_q,
qadd_preserves_qle,
q_distrib,
qadd_ac_1_q,
qadd_comm_q,
mon_assoc_q,
qinv_inv_q,
qmul_comm_qrng,
qmul_ac_1_qrng,
qmul_assoc_qrng,
qmul_over_minus_qrng,
qmul_over_plus_qrng,
qsub_wf,
q-square-non-neg,
le_wf,
int_formula_prop_le_lemma,
intformle_wf,
qsum_functionality_wrt_qle,
qsum-linearity2,
qsum-linearity1,
iff_weakening_equal,
qsum_product,
true_wf,
squash_wf,
qle_wf,
qadd_wf,
int_seg_properties,
nat_wf,
rationals_wf,
int_seg_wf,
lelt_wf,
qle_witness,
int-subtype-rationals,
int_formula_prop_wf,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
intformless_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__lt,
nat_properties,
qsum_wf,
qmul_wf,
qmul_preserves_qle
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
sqequalRule,
lambdaEquality,
applyEquality,
setElimination,
rename,
dependent_set_memberEquality,
productElimination,
independent_pairFormation,
hypothesis,
hypothesisEquality,
dependent_functionElimination,
addEquality,
natural_numberEquality,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
computeAll,
independent_functionElimination,
functionEquality,
imageElimination,
equalityTransitivity,
equalitySymmetry,
imageMemberEquality,
baseClosed,
universeEquality,
lambdaFormation,
minusEquality
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbN{}n + 1 {}\mrightarrow{} \mBbbQ{}].
((\mSigma{}0 \mleq{} i < n. x[i] * y[i] * \mSigma{}0 \mleq{} i < n. x[i] * y[i]) \mleq{} (\mSigma{}0 \mleq{} i < n. x[i] * x[i]
* \mSigma{}0 \mleq{} i < n. y[i] * y[i]))
Date html generated:
2016_05_15-PM-11_12_22
Last ObjectModification:
2016_01_16-PM-09_23_24
Theory : rationals
Home
Index