Nuprl Lemma : qsum_functionality_wrt_qle

[n,m:ℤ]. ∀[x,y:{n..m 1-} ⟶ ℚ].
  Σn ≤ k < m. x[k] ≤ Σn ≤ k < m. y[k] supposing ∀k:ℤ((n ≤ k)  (k ≤ m)  (x[k] ≤ y[k]))


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qle: r ≤ s rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q prop: bfalse: ff guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top ifthenelse: if then else fi  sq_type: SQType(T) bnot: ¬bb assert: b qle: r ≤ s grp_leq: a ≤ b infix_ap: y grp_le: b pi1: fst(t) pi2: snd(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s lt_int: i <j qeq: qeq(r;s) eq_int: (i =z j) true: True nat: ge: i ≥  le: A ≤ B rev_uimplies: rev_uimplies(P;Q) qge: a ≥ b
Lemmas referenced :  lt_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf less_than_wf eqtt_to_assert assert_of_lt_int le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf qle_witness qsum_wf int_seg_wf decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf all_wf qle_wf intformle_wf int_formula_prop_le_lemma rationals_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot qsum_unroll decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_wf nat_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma ge_wf subtype_rel_dep_function int_seg_subtype subtype_rel_self qadd_wf qle_functionality_wrt_implies qadd_functionality_wrt_qle qle_weakening_eq_qorder qle_reflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache independent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_functionElimination lambdaEquality functionExtensionality addEquality natural_numberEquality setElimination rename dependent_set_memberEquality independent_pairFormation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality promote_hyp instantiate cumulativity applyLambdaEquality intWeakElimination

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x,y:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    \mSigma{}n  \mleq{}  k  <  m.  x[k]  \mleq{}  \mSigma{}n  \mleq{}  k  <  m.  y[k]  supposing  \mforall{}k:\mBbbZ{}.  ((n  \mleq{}  k)  {}\mRightarrow{}  (k  \mleq{}  m)  {}\mRightarrow{}  (x[k]  \mleq{}  y[k]))



Date html generated: 2018_05_22-AM-00_02_37
Last ObjectModification: 2017_07_26-PM-06_50_58

Theory : rationals


Home Index