Nuprl Lemma : qtruncate-property

[q:ℚ]. ∀[N:ℕ+].  (qtruncate(q;N) (1/N) < q ∧ (q ≤ qtruncate(q;N)))


Proof




Definitions occuring in Statement :  qtruncate: qtruncate(q;N) qle: r ≤ s qless: r < s qsub: s qdiv: (r/s) rationals: nat_plus: + uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q int_nzero: -o prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top qtruncate: qtruncate(q;N) cand: c∧ B uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) true: True qsub: s squash: T qmul: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  qle_wf qmul_one_qrng iff_weakening_equal qmul-qdiv-cancel qadd_comm_q qmul_comm_qrng not_wf qmul_over_minus_qrng qadd_wf qmul_over_plus_qrng true_wf squash_wf qless_wf q-ceil_wf qmul_preserves_qle int_formula_prop_not_lemma intformnot_wf decidable__lt qless-int qmul_preserves_qless nat_plus_wf qle_witness equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_plus_properties nequal_wf subtype_rel_sets int_nzero-rational qdiv_wf qtruncate_wf qsub_wf qless_witness int-subtype-rationals less_than_wf rationals_wf subtype_rel_set qmul_wf q-ceil-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule intEquality hypothesis lambdaEquality natural_numberEquality independent_isectElimination productElimination independent_pairEquality because_Cache setElimination rename setEquality lambdaFormation dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination minusEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[q:\mBbbQ{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (qtruncate(q;N)  -  (1/N)  <  q  \mwedge{}  (q  \mleq{}  qtruncate(q;N)))



Date html generated: 2016_05_15-PM-11_35_27
Last ObjectModification: 2016_01_16-PM-09_12_40

Theory : rationals


Home Index