Nuprl Lemma : qtruncate-property
∀[q:ℚ]. ∀[N:ℕ+].  (qtruncate(q;N) - (1/N) < q ∧ (q ≤ qtruncate(q;N)))
Proof
Definitions occuring in Statement : 
qtruncate: qtruncate(q;N)
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
qtruncate: qtruncate(q;N)
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
qsub: r - s
, 
squash: ↓T
, 
qmul: r * s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
qle_wf, 
qmul_one_qrng, 
iff_weakening_equal, 
qmul-qdiv-cancel, 
qadd_comm_q, 
qmul_comm_qrng, 
not_wf, 
qmul_over_minus_qrng, 
qadd_wf, 
qmul_over_plus_qrng, 
true_wf, 
squash_wf, 
qless_wf, 
q-ceil_wf, 
qmul_preserves_qle, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
qless-int, 
qmul_preserves_qless, 
nat_plus_wf, 
qle_witness, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_plus_properties, 
nequal_wf, 
subtype_rel_sets, 
int_nzero-rational, 
qdiv_wf, 
qtruncate_wf, 
qsub_wf, 
qless_witness, 
int-subtype-rationals, 
less_than_wf, 
rationals_wf, 
subtype_rel_set, 
qmul_wf, 
q-ceil-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
intEquality, 
hypothesis, 
lambdaEquality, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
unionElimination, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[q:\mBbbQ{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (qtruncate(q;N)  -  (1/N)  <  q  \mwedge{}  (q  \mleq{}  qtruncate(q;N)))
Date html generated:
2016_05_15-PM-11_35_27
Last ObjectModification:
2016_01_16-PM-09_12_40
Theory : rationals
Home
Index