Nuprl Lemma : simple-cbva-seq_wf

[T:Type]. ∀[m:ℕ]. ∀[A:ℕm ⟶ ValueAllType]. ∀[L:i:ℕm ⟶ funtype(i;A;A i)]. ∀[F:if (m =z 0)
                                                                               then T
                                                                               else (A (m 1)) ⟶ T
                                                                               fi ].
  (simple-cbva-seq(L;F;m) ∈ T)


Proof




Definitions occuring in Statement :  simple-cbva-seq: simple-cbva-seq(L;F;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: vatype: ValueAllType ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  vatype: ValueAllType simple-cbva-seq: simple-cbva-seq(L;F;m) member: t ∈ T uall: [x:A]. B[x] nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B funtype: funtype(n;A;T) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: squash: T decidable: Dec(P) or: P ∨ Q true: True bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈ 
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int cbva-seq_wf subtype_rel-equal primrec_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformle_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma int_formula_prop_wf primrec0_lemma squash_wf true_wf int_seg_wf decidable__le intformnot_wf int_formula_prop_not_lemma le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nequal-le-implies zero-add mk_lambdas_wf subtype_rel_dep_function valueall-type_wf subtract_wf int_seg_subtype int_upper_properties itermSubtract_wf int_term_value_subtract_lemma false_wf decidable__lt lelt_wf funtype_wf int_seg_subtype_nat nat_wf subtype_rel_wf funtype-unroll-last-eq iff_weakening_equal subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule cumulativity hypothesisEquality functionExtensionality applyEquality instantiate universeEquality lambdaEquality functionEquality dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination dependent_set_memberEquality imageMemberEquality baseClosed promote_hyp independent_functionElimination hypothesis_subsumption setEquality isect_memberFormation axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;A;A  i)].  \mforall{}[F:if  (m  =\msubz{}  0)
                                                                                                                                                              then  T
                                                                                                                                                              else  (A  (m  -  1))  {}\mrightarrow{}  T
                                                                                                                                                              fi  ].
    (simple-cbva-seq(L;F;m)  \mmember{}  T)



Date html generated: 2017_10_01-AM-08_41_07
Last ObjectModification: 2017_07_26-PM-04_28_25

Theory : untyped!computation


Home Index