Nuprl Lemma : ip-line-circle-1
∀rv:InnerProductSpace. ∀a,b,p,q:Point(rv).
  (a # b
  
⇒ p # q
  
⇒ (||p - a|| ≤ ||a - b||)
  
⇒ (||a - b|| ≤ ||q - a||)
  
⇒ (∃u:{u:Point(rv)| ab=au ∧ q_u_p} 
       ∃v:{v:Point(rv)| ab=av ∧ q_p_v} . ((||a - p|| < ||a - b||) 
⇒ (p # v ∧ ((||a - b|| < ||a - q||) 
⇒ q # u)))))
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
ip-congruent: ab=cd
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
rless: x < y
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
let: let, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
top: Top
, 
quadratic1: quadratic1(a;b;c)
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
nat_plus: ℕ+
, 
rge: x ≥ y
, 
quadratic2: quadratic2(a;b;c)
, 
rv-sub: x - y
, 
rv-minus: -x
, 
ip-congruent: ab=cd
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
pi2: snd(t)
, 
rtermConstant: "const"
, 
rtermSubtract: left "-" right
, 
rtermDivide: num "/" denom
, 
pi1: fst(t)
, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
ip-line-circle-lemma, 
rv-norm_wf, 
rv-sub_wf, 
rleq_wf, 
inner-product-space_subtype, 
Error :ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-point_wf, 
rv-sep-shift, 
rv-sep-iff-norm, 
Error :ss-sep-symmetry, 
rnexp-positive, 
istype-void, 
istype-le, 
int-to-real_wf, 
rsub_wf, 
rmul_wf, 
rv-ip_wf, 
rnexp_wf, 
req_wf, 
rv-add_wf, 
rv-mul_wf, 
quadratic1_wf, 
rless_wf, 
quadratic2_wf, 
sq_stable__rleq, 
radd-preserves-rleq, 
itermMinus_wf, 
itermAdd_wf, 
rinv_wf2, 
rminus_wf, 
radd_wf, 
rdiv_wf, 
rmul_preserves_rleq, 
rsqrt_wf, 
member_rccint_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rless-int, 
rmul_preserves_rless, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
rleq_functionality, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
square-rleq-implies, 
req_functionality, 
req_inversion, 
rnexp2, 
rsub_functionality, 
istype-false, 
rleq-int, 
rmul_preserves_rleq2, 
rnexp2-nonneg, 
rmul-assoc, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rv-norm-nonneg, 
rnexp-rleq-iff, 
squash_wf, 
true_wf, 
real_wf, 
istype-nat, 
subtype_rel_self, 
iff_weakening_equal, 
rv-norm-squared, 
rv-ip-sub-squared, 
rv-ip-sub2, 
rv-ip-symmetry, 
rleq_transitivity, 
uiff_transitivity3, 
trivial-rleq-radd, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rminus_functionality, 
uiff_transitivity, 
sq_stable__rless, 
radd-preserves-rless, 
rleq-implies-rleq, 
rnexp-nonneg, 
rmul-nonneg-case1, 
square-rless-implies, 
rless-implies-rless, 
rv-norm-difference-symmetry, 
rnexp-rless, 
rmul-is-positive, 
Error :ss-eq_wf, 
Error :ss-eq_functionality, 
Error :ss-eq_transitivity, 
rv-add-swap, 
rv-add_functionality, 
rv-add-comm, 
Error :ss-eq_weakening, 
i-member_wf, 
rccint_wf, 
rv-minus_wf, 
rv-0_wf, 
iff_weakening_uiff, 
rv-norm_functionality, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
rv-mul-add, 
rv-mul_functionality, 
rv-mul0, 
rv-add-0, 
rv-sub_functionality, 
ip-congruent_wf, 
ip-between_wf, 
ip-between-iff2, 
rv-mul-1-add, 
rv-mul1, 
rv-add-cancel-left, 
rv-mul-add-alt, 
rv-mul-add-1, 
rabs_wf, 
Error :ss-eq_inversion, 
rv-norm-is-zero, 
rv-norm-mul, 
rleq_weakening_rless, 
rless_transitivity2, 
rabs-difference-symmetry, 
rabs-of-nonneg, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
rmul-rinv3, 
rmul_preserves_req, 
rv-0-add, 
rneq-by-function, 
rabs-positive, 
rpositive-rless, 
rv-mul-sep-zero, 
rv-sep-iff, 
rv-norm-positive, 
uimplies_transitivity, 
rless_functionality_wrt_implies, 
rdiv_functionality, 
rtermVar_wf, 
rtermConstant_wf, 
rtermSubtract_wf, 
rtermDivide_wf, 
assert-rat-term-eq2, 
int_subtype_base, 
subtype_base_sq, 
int_entire_a, 
rneq-int, 
rmul-int, 
rneq_functionality, 
square-nonzero, 
rabs-neq-zero, 
rv-mul-1-add-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
universeIsType, 
instantiate, 
independent_isectElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
voidElimination, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
equalityIstype, 
imageElimination, 
minusEquality, 
isect_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
dependent_pairFormation_alt, 
unionElimination, 
promote_hyp, 
universeEquality, 
inlFormation_alt, 
functionIsType, 
setIsType, 
sqequalBase, 
intEquality, 
cumulativity, 
multiplyEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,p,q:Point(rv).
    (a  \#  b
    {}\mRightarrow{}  p  \#  q
    {}\mRightarrow{}  (||p  -  a||  \mleq{}  ||a  -  b||)
    {}\mRightarrow{}  (||a  -  b||  \mleq{}  ||q  -  a||)
    {}\mRightarrow{}  (\mexists{}u:\{u:Point(rv)|  ab=au  \mwedge{}  q\_u\_p\} 
              \mexists{}v:\{v:Point(rv)|  ab=av  \mwedge{}  q\_p\_v\} 
                ((||a  -  p||  <  ||a  -  b||)  {}\mRightarrow{}  (p  \#  v  \mwedge{}  ((||a  -  b||  <  ||a  -  q||)  {}\mRightarrow{}  q  \#  u)))))
Date html generated:
2020_05_20-PM-01_14_39
Last ObjectModification:
2020_01_06-AM-10_55_14
Theory : inner!product!spaces
Home
Index