Nuprl Lemma : ip-line-circle-1

rv:InnerProductSpace. ∀a,b,p,q:Point(rv).
  (a b
   q
   (||p a|| ≤ ||a b||)
   (||a b|| ≤ ||q a||)
   (∃u:{u:Point(rv)| ab=au ∧ q_u_p} 
       ∃v:{v:Point(rv)| ab=av ∧ q_p_v} ((||a p|| < ||a b||)  (p v ∧ ((||a b|| < ||a q||)  u)))))


Proof




Definitions occuring in Statement :  ip-between: a_b_c ip-congruent: ab=cd rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rleq: x ≤ y rless: x < y all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a let: let iff: ⇐⇒ Q and: P ∧ Q nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False rneq: x ≠ y or: P ∨ Q sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) cand: c∧ B top: Top quadratic1: quadratic1(a;b;c) true: True squash: T less_than: a < b rev_implies:  Q req_int_terms: t1 ≡ t2 rdiv: (x/y) exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) sq_exists: x:A [B[x]] rless: x < y nat_plus: + rge: x ≥ y quadratic2: quadratic2(a;b;c) rv-sub: y rv-minus: -x ip-congruent: ab=cd so_apply: x[s] so_lambda: λ2x.t[x] pi2: snd(t) rtermConstant: "const" rtermSubtract: left "-" right rtermDivide: num "/" denom pi1: fst(t) rat_term_ind: rat_term_ind rtermVar: rtermVar(var) rat_term_to_real: rat_term_to_real(f;t) sq_type: SQType(T) nequal: a ≠ b ∈ 
Lemmas referenced :  ip-line-circle-lemma rv-norm_wf rv-sub_wf rleq_wf inner-product-space_subtype Error :ss-sep_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  Error :ss-point_wf,  rv-sep-shift rv-sep-iff-norm Error :ss-sep-symmetry,  rnexp-positive istype-void istype-le int-to-real_wf rsub_wf rmul_wf rv-ip_wf rnexp_wf req_wf rv-add_wf rv-mul_wf quadratic1_wf rless_wf quadratic2_wf sq_stable__rleq radd-preserves-rleq itermMinus_wf itermAdd_wf rinv_wf2 rminus_wf radd_wf rdiv_wf rmul_preserves_rleq rsqrt_wf member_rccint_lemma itermVar_wf itermConstant_wf itermMultiply_wf itermSubtract_wf rless-int rmul_preserves_rless rless_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rleq_functionality req_transitivity radd_functionality rmul_functionality req_weakening rmul-rinv real_term_value_add_lemma real_term_value_minus_lemma square-rleq-implies req_functionality req_inversion rnexp2 rsub_functionality istype-false rleq-int rmul_preserves_rleq2 rnexp2-nonneg rmul-assoc istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma intformless_wf intformnot_wf full-omega-unsat decidable__lt nat_plus_properties rv-norm-nonneg rnexp-rleq-iff squash_wf true_wf real_wf istype-nat subtype_rel_self iff_weakening_equal rv-norm-squared rv-ip-sub-squared rv-ip-sub2 rv-ip-symmetry rleq_transitivity uiff_transitivity3 trivial-rleq-radd rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rminus_functionality uiff_transitivity sq_stable__rless radd-preserves-rless rleq-implies-rleq rnexp-nonneg rmul-nonneg-case1 square-rless-implies rless-implies-rless rv-norm-difference-symmetry rnexp-rless rmul-is-positive Error :ss-eq_wf,  Error :ss-eq_functionality,  Error :ss-eq_transitivity,  rv-add-swap rv-add_functionality rv-add-comm Error :ss-eq_weakening,  i-member_wf rccint_wf rv-minus_wf rv-0_wf iff_weakening_uiff rv-norm_functionality rv-mul-linear rv-add-assoc rv-mul-mul rv-mul-add rv-mul_functionality rv-mul0 rv-add-0 rv-sub_functionality ip-congruent_wf ip-between_wf ip-between-iff2 rv-mul-1-add rv-mul1 rv-add-cancel-left rv-mul-add-alt rv-mul-add-1 rabs_wf Error :ss-eq_inversion,  rv-norm-is-zero rv-norm-mul rleq_weakening_rless rless_transitivity2 rabs-difference-symmetry rabs-of-nonneg int_term_value_var_lemma int_term_value_add_lemma rmul-rinv3 rmul_preserves_req rv-0-add rneq-by-function rabs-positive rpositive-rless rv-mul-sep-zero rv-sep-iff rv-norm-positive uimplies_transitivity rless_functionality_wrt_implies rdiv_functionality rtermVar_wf rtermConstant_wf rtermSubtract_wf rtermDivide_wf assert-rat-term-eq2 int_subtype_base subtype_base_sq int_entire_a rneq-int rmul-int rneq_functionality square-nonzero rabs-neq-zero rv-mul-1-add-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination applyEquality because_Cache hypothesis sqequalRule lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry independent_functionElimination universeIsType instantiate independent_isectElimination productElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation voidElimination productIsType closedConclusion inrFormation_alt equalityIstype imageElimination minusEquality isect_memberEquality_alt baseClosed imageMemberEquality approximateComputation int_eqEquality Error :memTop,  dependent_pairFormation_alt unionElimination promote_hyp universeEquality inlFormation_alt functionIsType setIsType sqequalBase intEquality cumulativity multiplyEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,p,q:Point(rv).
    (a  \#  b
    {}\mRightarrow{}  p  \#  q
    {}\mRightarrow{}  (||p  -  a||  \mleq{}  ||a  -  b||)
    {}\mRightarrow{}  (||a  -  b||  \mleq{}  ||q  -  a||)
    {}\mRightarrow{}  (\mexists{}u:\{u:Point(rv)|  ab=au  \mwedge{}  q\_u\_p\} 
              \mexists{}v:\{v:Point(rv)|  ab=av  \mwedge{}  q\_p\_v\} 
                ((||a  -  p||  <  ||a  -  b||)  {}\mRightarrow{}  (p  \#  v  \mwedge{}  ((||a  -  b||  <  ||a  -  q||)  {}\mRightarrow{}  q  \#  u)))))



Date html generated: 2020_05_20-PM-01_14_39
Last ObjectModification: 2020_01_06-AM-10_55_14

Theory : inner!product!spaces


Home Index