Nuprl Lemma : mkpadic_functionality
∀[p:{2...}]. ∀[n,m:ℕ]. ∀[a,b:p-adics(p)].  (a/p^n) = (b/p^m) ∈ padic(p) supposing bpa-equiv(p;<n, a><m, b>)
Proof
Definitions occuring in Statement : 
mkpadic: (a/p^n)
, 
padic: padic(p)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
p-adics: p-adics(p)
, 
int_upper: {i...}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pair: <a, b>
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
basic-padic: basic-padic(p)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
mkpadic: (a/p^n)
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
padic: padic(p)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
p-units: p-units(p)
, 
p-adics: p-adics(p)
, 
less_than: a < b
, 
squash: ↓T
, 
int_seg: {i..j-}
Lemmas referenced : 
bpa-equiv-iff-norm, 
bpa-equiv_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
p-adics_wf, 
nat_wf, 
int_upper_wf, 
mkpadic_wf, 
padic_wf, 
equal_wf, 
basic-padic_wf, 
padic_subtype_basic-padic, 
pi2_wf, 
pi1_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
ifthenelse_wf, 
eq_int_wf, 
p-units_wf, 
decidable__equal_int, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
nat_properties, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
not_wf, 
equal-wf-T-base, 
int_seg_wf, 
exp_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
independent_pairEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
isectElimination, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_pairEquality, 
universeEquality, 
equalityElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[p:\{2...\}].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[a,b:p-adics(p)].    (a/p\^{}n)  =  (b/p\^{}m)  supposing  bpa-equiv(p;<n,  a><m,  b>)
Date html generated:
2018_05_21-PM-03_26_35
Last ObjectModification:
2018_05_19-AM-08_23_49
Theory : rings_1
Home
Index