Nuprl Lemma : mkpadic_functionality

[p:{2...}]. ∀[n,m:ℕ]. ∀[a,b:p-adics(p)].  (a/p^n) (b/p^m) ∈ padic(p) supposing bpa-equiv(p;<n, a>;<m, b>)


Proof




Definitions occuring in Statement :  mkpadic: (a/p^n) padic: padic(p) bpa-equiv: bpa-equiv(p;x;y) p-adics: p-adics(p) int_upper: {i...} nat: uimplies: supposing a uall: [x:A]. B[x] pair: <a, b> natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] basic-padic: basic-padic(p) iff: ⇐⇒ Q and: P ∧ Q implies:  Q mkpadic: (a/p^n) prop: nat_plus: + int_upper: {i...} nat: le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True padic: padic(p) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) pi1: fst(t) sq_type: SQType(T) guard: {T} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff bnot: ¬bb assert: b p-units: p-units(p) p-adics: p-adics(p) less_than: a < b squash: T int_seg: {i..j-}
Lemmas referenced :  bpa-equiv-iff-norm bpa-equiv_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf p-adics_wf nat_wf int_upper_wf mkpadic_wf padic_wf equal_wf basic-padic_wf padic_subtype_basic-padic pi2_wf pi1_wf subtype_base_sq set_subtype_base le_wf int_subtype_base ifthenelse_wf eq_int_wf p-units_wf decidable__equal_int bool_wf eqtt_to_assert assert_of_eq_int nat_properties int_upper_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int not_wf equal-wf-T-base int_seg_wf exp_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule independent_pairEquality hypothesis productElimination independent_functionElimination isectElimination dependent_set_memberEquality setElimination rename natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination independent_isectElimination applyEquality lambdaEquality isect_memberEquality voidEquality intEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality promote_hyp instantiate cumulativity dependent_pairEquality universeEquality equalityElimination approximateComputation dependent_pairFormation int_eqEquality imageMemberEquality baseClosed

Latex:
\mforall{}[p:\{2...\}].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[a,b:p-adics(p)].    (a/p\^{}n)  =  (b/p\^{}m)  supposing  bpa-equiv(p;<n,  a><m,  b>)



Date html generated: 2018_05_21-PM-03_26_35
Last ObjectModification: 2018_05_19-AM-08_23_49

Theory : rings_1


Home Index