Nuprl Lemma : mset_fact

s:DSet. ∀a:MSet{s}.  (a (msFor{mset_mon{s}} x ∈ a. mset_inj{s}(x)) ∈ MSet{s})


Proof




Definitions occuring in Statement :  mset_for: mset_for mset_mon: mset_mon{s} mset_inj: mset_inj{s}(x) mset: MSet{s} all: x:A. B[x] equal: t ∈ T dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B mon: Mon imon: IMonoid uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] list: List grp_car: |g| pi1: fst(t) lapp_mon: <List, @> so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q mset: MSet{s} quotient: x,y:A//B[x; y] mset_mon: mset_mon{s} guard: {T} uimplies: supposing a ge: i ≥  top: Top decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] b2i: b2i(b) ifthenelse: if then else fi  infix_ap: y set_eq: =b pi2: snd(t) count: #∈ as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) cons: [a b] grp_op: * int_add_grp: <ℤ+> tlambda: λx:T. b[x] nil: [] it: grp_id: e prop: dislist: DisList{s} mk_mset: mk_mset(as) mset_inj: mset_inj{s}(x) squash: T true: True
Lemmas referenced :  dset_wf equal_mset_elim mon_for_wf lapp_mon_wf subtype_rel_self imon_wf set_car_wf cons_wf nil_wf grp_car_wf mon_subtype_grp_sig list_wf iff_transitivity all_wf mset_wf equal_wf mset_for_wf mset_mon_wf abmonoid_subtype_iabmonoid mset_inj_wf abmonoid_subtype_mon subtype_rel_transitivity abmonoid_wf mon_wf grp_sig_wf mk_mset_wf mk_mset_wf2 length_nil non_neg_length length_cons count_bounds length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma count_cons_lemma count_nil_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf le_wf count_wf all_mset_elim sq_stable__equal mset_for_elim_lemma squash_wf true_wf mset_mon_for_elim iff_weakening_equal permr_wf permr_weakening lapp_fact
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis addLevel allFunctionality sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality sqequalRule instantiate isectElimination setElimination rename lambdaEquality because_Cache productElimination independent_functionElimination independent_isectElimination voidEquality isect_memberEquality voidElimination unionElimination natural_numberEquality approximateComputation dependent_pairFormation int_eqEquality intEquality independent_pairFormation equalityTransitivity equalitySymmetry dependent_set_memberEquality levelHypothesis imageElimination functionEquality cumulativity universeEquality imageMemberEquality baseClosed allLevelFunctionality

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.    (a  =  (msFor\{mset\_mon\{s\}\}  x  \mmember{}  a.  mset\_inj\{s\}(x)))



Date html generated: 2018_05_22-AM-07_45_46
Last ObjectModification: 2018_05_19-AM-08_30_47

Theory : mset


Home Index