Nuprl Lemma : mset_fact
∀s:DSet. ∀a:MSet{s}. (a = (msFor{mset_mon{s}} x ∈ a. mset_inj{s}(x)) ∈ MSet{s})
Proof
Definitions occuring in Statement :
mset_for: mset_for,
mset_mon: mset_mon{s}
,
mset_inj: mset_inj{s}(x)
,
mset: MSet{s}
,
all: ∀x:A. B[x]
,
equal: s = t ∈ T
,
dset: DSet
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
mon: Mon
,
imon: IMonoid
,
uall: ∀[x:A]. B[x]
,
dset: DSet
,
so_lambda: λ2x.t[x]
,
list: T List
,
grp_car: |g|
,
pi1: fst(t)
,
lapp_mon: <s List, @>
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
mset: MSet{s}
,
quotient: x,y:A//B[x; y]
,
mset_mon: mset_mon{s}
,
guard: {T}
,
uimplies: b supposing a
,
ge: i ≥ j
,
top: Top
,
decidable: Dec(P)
,
or: P ∨ Q
,
false: False
,
le: A ≤ B
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
b2i: b2i(b)
,
ifthenelse: if b then t else f fi
,
infix_ap: x f y
,
set_eq: =b
,
pi2: snd(t)
,
count: a #∈ as
,
mon_for: For{g} x ∈ as. f[x]
,
for: For{T,op,id} x ∈ as. f[x]
,
reduce: reduce(f;k;as)
,
list_ind: list_ind,
map: map(f;as)
,
cons: [a / b]
,
grp_op: *
,
int_add_grp: <ℤ+>
,
tlambda: λx:T. b[x]
,
nil: []
,
it: ⋅
,
grp_id: e
,
prop: ℙ
,
dislist: DisList{s}
,
mk_mset: mk_mset(as)
,
mset_inj: mset_inj{s}(x)
,
squash: ↓T
,
true: True
Lemmas referenced :
dset_wf,
equal_mset_elim,
mon_for_wf,
lapp_mon_wf,
subtype_rel_self,
imon_wf,
set_car_wf,
cons_wf,
nil_wf,
grp_car_wf,
mon_subtype_grp_sig,
list_wf,
iff_transitivity,
all_wf,
mset_wf,
equal_wf,
mset_for_wf,
mset_mon_wf,
abmonoid_subtype_iabmonoid,
mset_inj_wf,
abmonoid_subtype_mon,
subtype_rel_transitivity,
abmonoid_wf,
mon_wf,
grp_sig_wf,
mk_mset_wf,
mk_mset_wf2,
length_nil,
non_neg_length,
length_cons,
count_bounds,
length_of_cons_lemma,
length_of_nil_lemma,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermVar_wf,
itermConstant_wf,
itermAdd_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
count_cons_lemma,
count_nil_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_formula_prop_wf,
le_wf,
count_wf,
all_mset_elim,
sq_stable__equal,
mset_for_elim_lemma,
squash_wf,
true_wf,
mset_mon_for_elim,
iff_weakening_equal,
permr_wf,
permr_weakening,
lapp_fact
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
introduction,
extract_by_obid,
hypothesis,
addLevel,
allFunctionality,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
applyEquality,
sqequalRule,
instantiate,
isectElimination,
setElimination,
rename,
lambdaEquality,
because_Cache,
productElimination,
independent_functionElimination,
independent_isectElimination,
voidEquality,
isect_memberEquality,
voidElimination,
unionElimination,
natural_numberEquality,
approximateComputation,
dependent_pairFormation,
int_eqEquality,
intEquality,
independent_pairFormation,
equalityTransitivity,
equalitySymmetry,
dependent_set_memberEquality,
levelHypothesis,
imageElimination,
functionEquality,
cumulativity,
universeEquality,
imageMemberEquality,
baseClosed,
allLevelFunctionality
Latex:
\mforall{}s:DSet. \mforall{}a:MSet\{s\}. (a = (msFor\{mset\_mon\{s\}\} x \mmember{} a. mset\_inj\{s\}(x)))
Date html generated:
2018_05_22-AM-07_45_46
Last ObjectModification:
2018_05_19-AM-08_30_47
Theory : mset
Home
Index