Nuprl Lemma : restrict_perm_wf

n:ℕ. ∀p:Sym(n 1).  (((p.f n) n ∈ ℕ1)  (restrict_perm(p;n) ∈ Sym(n)))


Proof




Definitions occuring in Statement :  restrict_perm: restrict_perm(p;n) sym_grp: Sym(n) perm_f: p.f int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q member: t ∈ T apply: a add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  sym_grp: Sym(n) all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat: perm: Perm(T) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] restrict_perm: restrict_perm(p;n) ge: i ≥  biject: Bij(A;B;f) inject: Inj(A;B;f) guard: {T} inv_funs: InvFuns(A;B;f;g) compose: g tidentity: Id{T} identity: Id sq_type: SQType(T) squash: T true: True iff: ⇐⇒ Q perm_sig: perm_sig(T) perm_f: p.f pi1: fst(t) perm_b: p.b pi2: snd(t) le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q uiff: uiff(P;Q) subtract: m
Lemmas referenced :  int_seg_wf perm_f_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf less_than_wf set_subtype_base lelt_wf int_subtype_base perm_wf nat_wf nat_properties intformand_wf int_formula_prop_and_lemma perm_properties perm_b_wf fun_with_inv_is_bij int_seg_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma decidable__le intformle_wf int_formula_prop_le_lemma not_wf equal_wf subtype_base_sq squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal subtype_rel_dep_function int_seg_subtype istype-false not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel inv_funs_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation_alt cut sqequalHypSubstitution hypothesis equalityIsType4 universeIsType introduction extract_by_obid isectElimination thin natural_numberEquality addEquality setElimination rename hypothesisEquality applyEquality dependent_functionElimination because_Cache dependent_set_memberEquality_alt independent_pairFormation unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType intEquality baseApply closedConclusion baseClosed functionExtensionality_alt productElimination equalityTransitivity equalitySymmetry applyLambdaEquality inhabitedIsType equalityIsType1 instantiate cumulativity imageElimination universeEquality imageMemberEquality dependent_pairEquality_alt minusEquality multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n  +  1).    (((p.f  n)  =  n)  {}\mRightarrow{}  (restrict\_perm(p;n)  \mmember{}  Sym(n)))



Date html generated: 2019_10_16-PM-01_00_13
Last ObjectModification: 2018_10_08-AM-09_12_46

Theory : perms_1


Home Index