Nuprl Lemma : restrict_perm_wf
∀n:ℕ. ∀p:Sym(n + 1).  (((p.f n) = n ∈ ℕn + 1) 
⇒ (restrict_perm(p;n) ∈ Sym(n)))
Proof
Definitions occuring in Statement : 
restrict_perm: restrict_perm(p;n)
, 
sym_grp: Sym(n)
, 
perm_f: p.f
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sym_grp: Sym(n)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
perm: Perm(T)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
restrict_perm: restrict_perm(p;n)
, 
ge: i ≥ j 
, 
biject: Bij(A;B;f)
, 
inject: Inj(A;B;f)
, 
guard: {T}
, 
inv_funs: InvFuns(A;B;f;g)
, 
compose: f o g
, 
tidentity: Id{T}
, 
identity: Id
, 
sq_type: SQType(T)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
perm_sig: perm_sig(T)
, 
perm_f: p.f
, 
pi1: fst(t)
, 
perm_b: p.b
, 
pi2: snd(t)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
Lemmas referenced : 
int_seg_wf, 
perm_f_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
le_wf, 
less_than_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
perm_wf, 
nat_wf, 
nat_properties, 
intformand_wf, 
int_formula_prop_and_lemma, 
perm_properties, 
perm_b_wf, 
fun_with_inv_is_bij, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
not_wf, 
equal_wf, 
subtype_base_sq, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
iff_weakening_equal, 
subtype_rel_dep_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
inv_funs_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
equalityIsType4, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
dependent_functionElimination, 
because_Cache, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
productIsType, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
functionExtensionality_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
inhabitedIsType, 
equalityIsType1, 
instantiate, 
cumulativity, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
dependent_pairEquality_alt, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}p:Sym(n  +  1).    (((p.f  n)  =  n)  {}\mRightarrow{}  (restrict\_perm(p;n)  \mmember{}  Sym(n)))
Date html generated:
2019_10_16-PM-01_00_13
Last ObjectModification:
2018_10_08-AM-09_12_46
Theory : perms_1
Home
Index