Nuprl Lemma : pi-par-decompose
∀[P:pi_term()]. P = pipar(pipar-left(P);pipar-right(P)) ∈ pi_term() supposing ↑pipar?(P)
Proof
Definitions occuring in Statement : 
pipar-right: pipar-right(v)
, 
pipar-left: pipar-left(v)
, 
pipar?: pipar?(v)
, 
pipar: pipar(left;right)
, 
pi_term: pi_term()
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
assert_wf, 
pipar?_wf, 
le_wf, 
pi_term_size_wf, 
pi_term_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
pi_term-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
assert_elim, 
pizero_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
decidable__lt, 
not-le-2, 
subtract-is-less, 
lelt_wf, 
picomm_wf, 
nat_wf, 
pioption_wf, 
pipar_wf, 
pirep_wf, 
pinew_wf, 
not-equal-2, 
le-add-cancel-alt, 
sq_stable__le, 
add-mul-special, 
zero-mul
Latex:
\mforall{}[P:pi\_term()].  P  =  pipar(pipar-left(P);pipar-right(P))  supposing  \muparrow{}pipar?(P)
Date html generated:
2015_07_23-AM-11_32_56
Last ObjectModification:
2015_01_29-AM-00_55_57
Home
Index