Nuprl Lemma : bind-return-left

[Info,T,S:Type]. ∀[x:T].  ∀f:T ─→ EClass(S). (return-class(x) >z> f[z] f[x] ∈ EClass(S))


Proof




Definitions occuring in Statement :  return-class: return-class(x) bind-class: X >x> Y[x] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  bind-class_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf hd-es-le-before-is-first btrue_wf list_set_type tl_wf es-le-before_wf2 subtype_rel_list es-le_wf not_wf assert_wf es-first_wf2 l_all_iff Id_wf es-loc_wf es-le-before_wf l_member_wf set_wf l_member-settype equal_wf tl-es-le-before subtype_rel_self list-subtype-bag es-le-before-not-null list_wf list-cases null_nil_lemma length_of_nil_lemma bfalse_wf btrue_neq_bfalse product_subtype_list null_cons_lemma length_of_cons_lemma length_wf non_neg_length length_wf_nat hd_wf subtype_base_sq bool_wf bool_subtype_base bag_wf bag-append_wf cons_wf ge_wf iff_weakening_equal nil_wf subtype_rel_bag subtype_rel_sets exists_wf squash_wf true_wf sq_stable_from_decidable decidable__es-le list_ind_cons_lemma list_ind_nil_lemma reduce_tl_nil_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma subtype_rel_list_set es-le-loc nat_wf return-class_wf bag-combine_wf eo-forward_wf member-eo-forward-E bag-combine-append-left bag-append-empty top_wf bag-subtype-list single-bag_wf empty-bag_wf bag-combine-single-left bool_cases eqtt_to_assert eqff_to_assert assert_of_bnot eo-forward-trivial bag-combine-empty-right bag_combine_empty_lemma equal-wf-T-base
\mforall{}[Info,T,S:Type].  \mforall{}[x:T].    \mforall{}f:T  {}\mrightarrow{}  EClass(S).  (return-class(x)  >z>  f[z]  =  f[x])



Date html generated: 2015_07_17-PM-00_43_59
Last ObjectModification: 2015_02_04-PM-05_33_42

Home Index