Nuprl Lemma : bind-return-left
∀[Info,T,S:Type]. ∀[x:T].  ∀f:T ─→ EClass(S). (return-class(x) >z> f[z] = f[x] ∈ EClass(S))
Proof
Definitions occuring in Statement : 
return-class: return-class(x)
, 
bind-class: X >x> Y[x]
, 
eclass: EClass(A[eo; e])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
bind-class_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf, 
hd-es-le-before-is-first, 
btrue_wf, 
list_set_type, 
tl_wf, 
es-le-before_wf2, 
subtype_rel_list, 
es-le_wf, 
not_wf, 
assert_wf, 
es-first_wf2, 
l_all_iff, 
Id_wf, 
es-loc_wf, 
es-le-before_wf, 
l_member_wf, 
set_wf, 
l_member-settype, 
equal_wf, 
tl-es-le-before, 
subtype_rel_self, 
list-subtype-bag, 
es-le-before-not-null, 
list_wf, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
length_wf, 
non_neg_length, 
length_wf_nat, 
hd_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
bag_wf, 
bag-append_wf, 
cons_wf, 
ge_wf, 
iff_weakening_equal, 
nil_wf, 
subtype_rel_bag, 
subtype_rel_sets, 
exists_wf, 
squash_wf, 
true_wf, 
sq_stable_from_decidable, 
decidable__es-le, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
reduce_tl_nil_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
subtype_rel_list_set, 
es-le-loc, 
nat_wf, 
return-class_wf, 
bag-combine_wf, 
eo-forward_wf, 
member-eo-forward-E, 
bag-combine-append-left, 
bag-append-empty, 
top_wf, 
bag-subtype-list, 
single-bag_wf, 
empty-bag_wf, 
bag-combine-single-left, 
bool_cases, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
eo-forward-trivial, 
bag-combine-empty-right, 
bag_combine_empty_lemma, 
equal-wf-T-base
\mforall{}[Info,T,S:Type].  \mforall{}[x:T].    \mforall{}f:T  {}\mrightarrow{}  EClass(S).  (return-class(x)  >z>  f[z]  =  f[x])
Date html generated:
2015_07_17-PM-00_43_59
Last ObjectModification:
2015_02_04-PM-05_33_42
Home
Index