Nuprl Lemma : hd-es-le-before-is-first

[es:EO]. ∀[e:E].  (first(hd(≤loc(e))) tt)


Proof




Definitions occuring in Statement :  es-le-before: loc(e) es-first: first(e) es-E: E event_ordering: EO hd: hd(l) btrue: tt uall: [x:A]. B[x] sqequal: t
Lemmas :  subtype_base_sq bool_wf bool_subtype_base es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf es-first_wf2 eqtt_to_assert list_ind_nil_lemma reduce_hd_cons_lemma iff_imp_equal_bool btrue_wf assert_wf true_wf uiff_transitivity equal-wf-T-base bnot_wf not_wf eqff_to_assert assert_of_bnot es-pred_wf es-pred-locl es-causl_weakening equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-E_wf event_ordering_wf squash_wf es-le-before_wf list_wf Id_wf es-loc_wf set_wf list-cases product_subtype_list list_ind_cons_lemma null_wf3 subtype_rel_list top_wf es-le-before-not-null null_nil_lemma btrue_neq_bfalse
\mforall{}[es:EO].  \mforall{}[e:E].    (first(hd(\mleq{}loc(e)))  \msim{}  tt)



Date html generated: 2015_07_17-AM-08_43_12
Last ObjectModification: 2015_01_27-PM-02_42_16

Home Index