Nuprl Lemma : fpf-vals_wf
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[P:A ─→ 𝔹]. ∀[f:x:A fp-> B[x]].  (fpf-vals(eq;P;f) ∈ (x:{a:A| ↑(P a)}  ×\000C B[x]) List)
Proof
Definitions occuring in Statement : 
fpf-vals: fpf-vals(eq;P;f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
fpf_wf, 
bool_wf, 
deq_wf, 
remove-repeats_wf, 
l_member_wf, 
subtype_rel-deq, 
member_wf, 
equal_wf, 
set_wf, 
list-subtype, 
list_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
filter_nil_lemma, 
zip_nil_lemma, 
nil_wf, 
assert_wf, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
filter_cons_lemma, 
map_cons_lemma, 
zip_cons_cons_lemma, 
cons_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].
    (fpf-vals(eq;P;f)  \mmember{}  (x:\{a:A|  \muparrow{}(P  a)\}    \mtimes{}  B[x])  List)
Date html generated:
2015_07_17-AM-11_09_14
Last ObjectModification:
2015_01_28-AM-07_45_29
Home
Index