Nuprl Lemma : fpf-vals_wf

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[P:A ─→ 𝔹]. ∀[f:x:A fp-> B[x]].  (fpf-vals(eq;P;f) ∈ (x:{a:A| ↑(P a)}  ×\000C B[x]) List)


Proof




Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf: a:A fp-> B[a] deq: EqDecider(T) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  fpf_wf bool_wf deq_wf remove-repeats_wf l_member_wf subtype_rel-deq member_wf equal_wf set_wf list-subtype list_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases filter_nil_lemma zip_nil_lemma nil_wf assert_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base filter_cons_lemma map_cons_lemma zip_cons_cons_lemma cons_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].
    (fpf-vals(eq;P;f)  \mmember{}  (x:\{a:A|  \muparrow{}(P  a)\}    \mtimes{}  B[x])  List)



Date html generated: 2015_07_17-AM-11_09_14
Last ObjectModification: 2015_01_28-AM-07_45_29

Home Index