Nuprl Lemma : run_local_pred_time_less

M:Type ─→ Type. ∀r:pRunType(P.M[P]). ∀e,x:runEvents(r).
  ((run-event-loc(x) run-event-loc(e) ∈ Id)
   run-event-step(x) < run-event-step(e)
   run-event-step(run_local_pred(r;e)) < run-event-step(e))


Proof




Definitions occuring in Statement :  run_local_pred: run_local_pred(r;e) run-event-step: run-event-step(e) run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) Id: Id less_than: a < b so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  less_than_wf equal_wf Id_wf nat_wf runEvents_wf pRunType_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add value-type-has-value int-value-type subtract_wf is-run-event_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel subtract-is-less ge_wf run-local-pred_wf not-ge-2 less-iff-le add-zero not-equal-2 add-mul-special zero-mul le-add-cancel2 le_functionality int_subtype_base assert_elim atom2_subtype_base not_assert_elim btrue_neq_bfalse equal-wf-T-base decidable__lt le-add-cancel-alt and_wf

Latex:
\mforall{}M:Type  {}\mrightarrow{}  Type.  \mforall{}r:pRunType(P.M[P]).  \mforall{}e,x:runEvents(r).
    ((run-event-loc(x)  =  run-event-loc(e))
    {}\mRightarrow{}  run-event-step(x)  <  run-event-step(e)
    {}\mRightarrow{}  run-event-step(run\_local\_pred(r;e))  <  run-event-step(e))



Date html generated: 2015_07_23-AM-11_15_13
Last ObjectModification: 2015_01_29-AM-00_08_55

Home Index