Nuprl Lemma : RankEx1-induction

[T:Type]. ∀[P:RankEx1(T) ─→ ℙ].
  ((∀leaf:T. P[RankEx1_Leaf(leaf)])
   (∀prod:RankEx1(T) × RankEx1(T). (let u,u1 prod in P[u] ∧ P[u1]  P[RankEx1_Prod(prod)]))
   (∀prodl:T × RankEx1(T). (let u,u1 prodl in P[u1]  P[RankEx1_ProdL(prodl)]))
   (∀prodr:RankEx1(T) × T. (let u,u1 prodr in P[u]  P[RankEx1_ProdR(prodr)]))
   (∀list:RankEx1(T) List. ((∀u∈list.P[u])  P[RankEx1_List(list)]))
   {∀v:RankEx1(T). P[v]})


Proof




Definitions occuring in Statement :  RankEx1_List: RankEx1_List(list) RankEx1_ProdR: RankEx1_ProdR(prodr) RankEx1_ProdL: RankEx1_ProdL(prodl) RankEx1_Prod: RankEx1_Prod(prod) RankEx1_Leaf: RankEx1_Leaf(leaf) RankEx1: RankEx1(T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ─→ B[x] spread: spread def product: x:A × B[x] universe: Type
Lemmas :  uniform-comp-nat-induction all_wf isect_wf le_wf RankEx1_size_wf nat_wf less_than_wf RankEx1-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract-is-less lelt_wf decidable__lt sum-nat length_wf_nat select_wf sq_stable__le int_seg_wf length_wf sum_wf RankEx1_wf sum-nat-less uall_wf le_weakening list_wf l_all_wf2 l_member_wf RankEx1_List_wf RankEx1_ProdR_wf RankEx1_ProdL_wf RankEx1_Prod_wf RankEx1_Leaf_wf
\mforall{}[T:Type].  \mforall{}[P:RankEx1(T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}leaf:T.  P[RankEx1\_Leaf(leaf)])
    {}\mRightarrow{}  (\mforall{}prod:RankEx1(T)  \mtimes{}  RankEx1(T).  (let  u,u1  =  prod  in  P[u]  \mwedge{}  P[u1]  {}\mRightarrow{}  P[RankEx1\_Prod(prod)]))
    {}\mRightarrow{}  (\mforall{}prodl:T  \mtimes{}  RankEx1(T).  (let  u,u1  =  prodl  in  P[u1]  {}\mRightarrow{}  P[RankEx1\_ProdL(prodl)]))
    {}\mRightarrow{}  (\mforall{}prodr:RankEx1(T)  \mtimes{}  T.  (let  u,u1  =  prodr  in  P[u]  {}\mRightarrow{}  P[RankEx1\_ProdR(prodr)]))
    {}\mRightarrow{}  (\mforall{}list:RankEx1(T)  List.  ((\mforall{}u\mmember{}list.P[u])  {}\mRightarrow{}  P[RankEx1\_List(list)]))
    {}\mRightarrow{}  \{\mforall{}v:RankEx1(T).  P[v]\})



Date html generated: 2015_07_17-AM-07_48_32
Last ObjectModification: 2015_01_27-AM-09_38_57

Home Index