Nuprl Lemma : bm_delmin_wf
∀[T,Key:Type]. ∀[m:binary-map(T;Key)].  bm_delmin(m) ∈ binary-map(T;Key) supposing ↑bm_T?(m)
Proof
Definitions occuring in Statement : 
bm_delmin: bm_delmin(m)
, 
binary-map: binary-map(T;Key)
, 
bm_T?: bm_T?(v)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
assert_wf, 
bm_T?_wf, 
bm_cnt_prop_wf, 
le_wf, 
binary_map_size_wf, 
binary_map_wf, 
int_seg_wf, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
binary_map-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
unit_wf2, 
unit_subtype_base, 
it_wf, 
bm_cnt_prop_E_reduce_lemma, 
true_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
not-le-2, 
subtract-is-less, 
lelt_wf, 
bm_cnt_prop_T, 
bm_cnt_prop_E, 
bm_numItems_E, 
binary_map_case_E, 
binary_map_case_T, 
bm_numItems_T_reduce_lemma, 
bm_T'_wf, 
bm_T_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
sq_stable__le, 
add-mul-special, 
zero-mul, 
nat_wf, 
binary-map_wf
\mforall{}[T,Key:Type].  \mforall{}[m:binary-map(T;Key)].    bm\_delmin(m)  \mmember{}  binary-map(T;Key)  supposing  \muparrow{}bm\_T?(m)
Date html generated:
2015_07_17-AM-08_19_14
Last ObjectModification:
2015_01_27-PM-00_37_40
Home
Index