Nuprl Lemma : bm_mapi_wf

[T,Key:Type]. ∀[f:Key ─→ T ─→ T]. ∀[m:binary-map(T;Key)].  (bm_mapi(f;m) ∈ binary-map(T;Key))


Proof




Definitions occuring in Statement :  bm_mapi: bm_mapi(f;m) binary-map: binary-map(T;Key) uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf assert_wf bm_cnt_prop_wf le_wf binary_map_size_wf binary_map_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties binary_map-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base unit_wf2 unit_subtype_base it_wf bm_cnt_prop_E_reduce_lemma bm_E-wf2 true_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom not-le-2 subtract-is-less lelt_wf bm_cnt_prop_T bm_T-wf2 bm_cnt_prop_E bm_numItems_E bm_numItems_E_reduce_lemma bm_numItems_T_reduce_lemma bm_T_wf decidable__lt not-equal-2 le-add-cancel-alt sq_stable__le add-mul-special zero-mul nat_wf binary-map_wf
\mforall{}[T,Key:Type].  \mforall{}[f:Key  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[m:binary-map(T;Key)].    (bm\_mapi(f;m)  \mmember{}  binary-map(T;Key))



Date html generated: 2015_07_17-AM-08_20_33
Last ObjectModification: 2015_01_27-PM-00_37_43

Home Index