Nuprl Lemma : hdf-cbva-simple_wf

[U,T:Type]. ∀[m:ℕ+]. ∀[A:ℕm ─→ ValueAllType]. ∀[L:U ─→ i:ℕm ─→ funtype(i;λk.bag(A k);bag(A i))].
  (hdf-cbva-simple(L;m) ∈ hdataflow(U;A (m 1)))


Proof




Definitions occuring in Statement :  hdf-cbva-simple: hdf-cbva-simple(L;m) hdataflow: hdataflow(A;B) nat_plus: + int_seg: {i..j-} vatype: ValueAllType uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ─→ B[x] subtract: m natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int simple-cbva-seq_wf primrec_wf not-le-2 not-equal-2 le_wf top_wf bag_wf subtract-is-less lelt_wf int_seg_wf nat_plus_subtype_nat bag-valueall-type valueall-type_wf sq_stable__valueall-type le_weakening nat_wf funtype_wf int_seg_subtype-nat less_than_transitivity2 le_weakening2 nat_plus_wf
\mforall{}[U,T:Type].  \mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:U  {}\mrightarrow{}  i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;\mlambda{}k.bag(A  k);bag(A  i))].
    (hdf-cbva-simple(L;m)  \mmember{}  hdataflow(U;A  (m  -  1)))



Date html generated: 2015_07_17-AM-08_08_06
Last ObjectModification: 2015_01_27-PM-00_06_19

Home Index