Nuprl Lemma : hdf-cbva-simple_wf
∀[U,T:Type]. ∀[m:ℕ+]. ∀[A:ℕm ─→ ValueAllType]. ∀[L:U ─→ i:ℕm ─→ funtype(i;λk.bag(A k);bag(A i))].
  (hdf-cbva-simple(L;m) ∈ hdataflow(U;A (m - 1)))
Proof
Definitions occuring in Statement : 
hdf-cbva-simple: hdf-cbva-simple(L;m)
, 
hdataflow: hdataflow(A;B)
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
vatype: ValueAllType
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
bag: bag(T)
, 
funtype: funtype(n;A;T)
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
simple-cbva-seq_wf, 
primrec_wf, 
not-le-2, 
not-equal-2, 
le_wf, 
top_wf, 
bag_wf, 
subtract-is-less, 
lelt_wf, 
int_seg_wf, 
nat_plus_subtype_nat, 
bag-valueall-type, 
valueall-type_wf, 
sq_stable__valueall-type, 
le_weakening, 
nat_wf, 
funtype_wf, 
int_seg_subtype-nat, 
less_than_transitivity2, 
le_weakening2, 
nat_plus_wf
\mforall{}[U,T:Type].  \mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:U  {}\mrightarrow{}  i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;\mlambda{}k.bag(A  k);bag(A  i))].
    (hdf-cbva-simple(L;m)  \mmember{}  hdataflow(U;A  (m  -  1)))
Date html generated:
2015_07_17-AM-08_08_06
Last ObjectModification:
2015_01_27-PM-00_06_19
Home
Index