Nuprl Lemma : list-ss_wf
∀[ss:SeparationSpace]. (list(ss) ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
list-ss: list(ss)
, 
separation-space: SeparationSpace
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list-ss: list(ss)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
, 
length: ||as||
, 
list_ind: list_ind, 
subtype_rel: A ⊆r B
, 
exposed-it: exposed-it
, 
separation-space: SeparationSpace
, 
record+: record+, 
record-select: r.x
, 
eq_atom: x =a y
, 
ss-sep: x # y
, 
ss-point: Point(ss)
, 
true: True
Lemmas referenced : 
mk-ss_wf, 
list_wf, 
ss-point_wf, 
length_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
exists_wf, 
int_seg_wf, 
ss-sep_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
true_wf, 
ss-sep-irrefl, 
subtype_rel_self, 
record-select_wf, 
top_wf, 
istype-atom, 
not_wf, 
all_wf, 
or_wf, 
istype-le, 
istype-less_than, 
int_eq_wf, 
istype-true, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
int_eqReduceTrueSq, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
productIsType, 
imageElimination, 
functionIsType, 
applyEquality, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
tokenEquality, 
universeEquality, 
setEquality, 
functionEquality, 
applyLambdaEquality, 
functionExtensionality, 
inlEquality_alt, 
dependent_pairEquality_alt, 
inrEquality_alt, 
axiomEquality
Latex:
\mforall{}[ss:SeparationSpace].  (list(ss)  \mmember{}  SeparationSpace)
Date html generated:
2019_10_31-AM-07_27_10
Last ObjectModification:
2019_09_19-PM-04_12_51
Theory : constructive!algebra
Home
Index