Nuprl Lemma : list-ss_wf
∀[ss:SeparationSpace]. (list(ss) ∈ SeparationSpace)
Proof
Definitions occuring in Statement : 
list-ss: list(ss), 
separation-space: SeparationSpace, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
list-ss: list(ss), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
so_apply: x[s], 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
less_than: a < b, 
squash: ↓T, 
length: ||as||, 
list_ind: list_ind, 
subtype_rel: A ⊆r B, 
exposed-it: exposed-it, 
separation-space: SeparationSpace, 
record+: record+, 
record-select: r.x, 
eq_atom: x =a y, 
ss-sep: x # y, 
ss-point: Point(ss), 
true: True
Lemmas referenced : 
mk-ss_wf, 
list_wf, 
ss-point_wf, 
length_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
exists_wf, 
int_seg_wf, 
ss-sep_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
true_wf, 
ss-sep-irrefl, 
subtype_rel_self, 
record-select_wf, 
top_wf, 
istype-atom, 
not_wf, 
all_wf, 
or_wf, 
istype-le, 
istype-less_than, 
int_eq_wf, 
istype-true, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
because_Cache, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
int_eqReduceTrueSq, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
productIsType, 
imageElimination, 
functionIsType, 
applyEquality, 
dependentIntersectionElimination, 
dependentIntersectionEqElimination, 
tokenEquality, 
universeEquality, 
setEquality, 
functionEquality, 
applyLambdaEquality, 
functionExtensionality, 
inlEquality_alt, 
dependent_pairEquality_alt, 
inrEquality_alt, 
axiomEquality
Latex:
\mforall{}[ss:SeparationSpace].  (list(ss)  \mmember{}  SeparationSpace)
Date html generated:
2019_10_31-AM-07_27_10
Last ObjectModification:
2019_09_19-PM-04_12_51
Theory : constructive!algebra
Home
Index