Nuprl Lemma : nc-e'-lemma5

[I,J:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:{j:ℕ| ¬j ∈ J} ]. ∀[g:J ⟶ I]. ∀[k:{i1:ℕ| ¬i1 ∈ I+i} ]. ∀[l:{i:ℕ| ¬i ∈ J+j} ].
  (s ⋅ g,i=j,k=l g ⋅ s ∈ J+j+l ⟶ I)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] top: Top compose: g nc-s: s all: x:A. B[x] implies:  Q DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} true: True squash: T iff: ⇐⇒ Q rev_implies:  Q nc-e': g,i=j names: names(I) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A nequal: a ≠ b ∈  sq_stable: SqStable(P) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  names_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self add-name_wf names-hom_wf f-subset-add-name1 f-subset-add-name lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nc-e'_wf names-subtype nh-comp-sq squash_wf true_wf dM-lift-inc dM-lift-s iff_weakening_equal dM-point-subtype eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base fset-member-add-name trivial-member-add-name1 nat_properties sq_stable__not decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality setElimination rename isect_memberEquality axiomEquality voidElimination voidEquality dependent_functionElimination independent_functionElimination instantiate productEquality cumulativity universeEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp inrFormation int_eqEquality independent_pairFormation computeAll hyp_replacement dependent_set_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[k:\{i1:\mBbbN{}|  \mneg{}i1  \mmember{}  I+i\}  ].
\mforall{}[l:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J+j\}  ].
    (s  \mcdot{}  g,i=j,k=l  =  g  \mcdot{}  s)



Date html generated: 2017_10_05-AM-01_05_31
Last ObjectModification: 2017_07_28-AM-09_27_27

Theory : cubical!type!theory


Home Index