Nuprl Lemma : nc-e'-s-lemma1

[I,J:fset(ℕ)]. ∀[i,z:ℕ]. ∀[g:J ⟶ I]. ∀[j,k:ℕ].  g,i=z ⋅ s ⋅ g,j=k,i=z ∈ J+z+k ⟶ I+i supposing ¬j ∈ I


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names-hom: I ⟶ J prop: subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] top: Top compose: g nc-e': g,i=j nc-s: s names: names(I) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} squash: T DeMorgan-algebra: DeMorganAlgebra label: ...$L... t true: True iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False dM_inc: <x> dminc: <i> free-dl-inc: free-dl-inc(x) fset-singleton: {x} cons: [a b] nequal: a ≠ b ∈  ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) sq_stable: SqStable(P)
Lemmas referenced :  names_wf add-name_wf not_wf fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base equal_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift-inc nc-s_wf f-subset-add-name trivial-member-add-name1 trivial-member-add-name2 add-name-com subtype_rel_self iff_weakening_equal eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int not-added-name dM-lift_wf2 dM-point-subtype names-subtype nh-comp-sq nc-e'_wf dM_inc_wf nat_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf intformand_wf int_formula_prop_and_lemma dM-lift-is-id2 f-subset_wf f-subset-add-name1 fset-member-add-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality intEquality independent_isectElimination because_Cache sqequalRule lambdaEquality natural_numberEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination voidEquality setElimination rename lambdaFormation unionElimination equalityElimination productElimination instantiate cumulativity dependent_functionElimination independent_functionElimination imageElimination universeEquality productEquality dependent_set_memberEquality imageMemberEquality baseClosed hyp_replacement dependent_pairFormation promote_hyp approximateComputation int_eqEquality independent_pairFormation applyLambdaEquality inrFormation

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i,z:\mBbbN{}].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j,k:\mBbbN{}].    g,i=z  \mcdot{}  s  =  s  \mcdot{}  g,j=k,i=z  supposing  \mneg{}j  \mmember{}  I



Date html generated: 2018_05_23-AM-08_30_40
Last ObjectModification: 2018_05_20-PM-05_44_54

Theory : cubical!type!theory


Home Index