Nuprl Lemma : rat-cube-third-not-in-face
∀[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].
∀f:ℚCube(k). (¬in-rat-cube(k;p;f)) supposing ((¬(f = c ∈ ℚCube(k))) and f ≤ c) supposing rat-cube-third(k;p;c) ∧ (↑Inh\000Cabited(c))
Proof
Definitions occuring in Statement :
rat-cube-third: rat-cube-third(k;p;c)
,
in-rat-cube: in-rat-cube(k;p;c)
,
real-vec: ℝ^n
,
nat: ℕ
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
equal: s = t ∈ T
,
inhabited-rat-cube: Inhabited(c)
,
rat-cube-face: c ≤ d
,
rational-cube: ℚCube(k)
Definitions unfolded in proof :
req_int_terms: t1 ≡ t2
,
rdiv: (x/y)
,
rev_uimplies: rev_uimplies(P;Q)
,
nequal: a ≠ b ∈ T
,
int_nzero: ℤ-o
,
sq_type: SQType(T)
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
decidable: Dec(P)
,
uiff: uiff(P;Q)
,
less_than': less_than'(a;b)
,
less_than: a < b
,
rneq: x ≠ y
,
rat-interval-third: rat-interval-third(p;I)
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
guard: {T}
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
prop: ℙ
,
pi1: fst(t)
,
pi2: snd(t)
,
top: Top
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
or: P ∨ Q
,
rat-point-interval: [a]
,
rat-interval-face: I ≤ J
,
rational-interval: ℚInterval
,
real-vec: ℝ^n
,
rat-cube-face: c ≤ d
,
in-rat-cube: in-rat-cube(k;p;c)
,
rational-cube: ℚCube(k)
,
rat-cube-third: rat-cube-third(k;p;c)
,
and: P ∧ Q
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
real_term_value_add_lemma,
real_term_value_const_lemma,
real_term_value_var_lemma,
real_term_value_mul_lemma,
real_term_value_sub_lemma,
real_polynomial_null,
int-rinv-cancel,
rmul-rinv3,
radd_functionality,
req_transitivity,
req_weakening,
req_functionality,
req-iff-rsub-is-0,
rsub_wf,
req-implies-req,
req-rat2real,
nequal_wf,
int_formula_prop_wf,
int_term_value_mul_lemma,
int_term_value_constant_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_not_lemma,
istype-int,
intformeq_wf,
intformnot_wf,
full-omega-unsat,
decidable__equal_int,
int_subtype_base,
subtype_base_sq,
itermAdd_wf,
rinv_wf2,
itermConstant_wf,
itermVar_wf,
itermMultiply_wf,
itermSubtract_wf,
rmul_preserves_req,
rless_wf,
rless-int,
int-to-real_wf,
rmul_wf,
radd_wf,
rdiv_wf,
req_fake_le_antisymmetry,
istype-universe,
equal_wf,
iff_weakening_equal,
subtype_rel_self,
real_wf,
true_wf,
squash_wf,
rational-interval_wf,
rat2real_wf,
rleq_wf,
rat-interval-third_wf,
istype-nat,
real-vec_wf,
rational-cube_wf,
inhabited-rat-cube_wf,
istype-assert,
rat-cube-third_wf,
rat-cube-face_wf,
in-rat-cube_wf,
int_seg_wf,
rat-interval-face_wf,
istype-void,
pi1_wf_top,
rationals_wf,
pi2_wf,
in-rat-cube-face
Rules used in proof :
int_eqEquality,
sqequalBase,
dependent_set_memberEquality_alt,
dependent_pairFormation_alt,
approximateComputation,
intEquality,
cumulativity,
inrFormation_alt,
closedConclusion,
promote_hyp,
independent_pairFormation,
universeEquality,
instantiate,
baseClosed,
imageMemberEquality,
imageElimination,
productIsType,
isectIsTypeImplies,
functionIsType,
functionIsTypeImplies,
because_Cache,
rename,
setElimination,
natural_numberEquality,
equalitySymmetry,
equalityTransitivity,
equalityIstype,
universeIsType,
voidElimination,
isect_memberEquality_alt,
independent_pairEquality,
lambdaEquality_alt,
sqequalRule,
applyLambdaEquality,
unionElimination,
inhabitedIsType,
applyEquality,
dependent_functionElimination,
functionExtensionality,
hypothesis,
independent_isectElimination,
hypothesisEquality,
isectElimination,
extract_by_obid,
independent_functionElimination,
productElimination,
sqequalHypSubstitution,
thin,
lambdaFormation_alt,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}]. \mforall{}[p:\mBbbR{}\^{}k]. \mforall{}[c:\mBbbQ{}Cube(k)].
\mforall{}f:\mBbbQ{}Cube(k). (\mneg{}in-rat-cube(k;p;f)) supposing ((\mneg{}(f = c)) and f \mleq{} c)
supposing rat-cube-third(k;p;c) \mwedge{} (\muparrow{}Inhabited(c))
Date html generated:
2019_11_04-PM-04_43_32
Last ObjectModification:
2019_11_04-PM-03_32_34
Theory : real!vectors
Home
Index