Nuprl Lemma : fun-converges-to-rminus
∀I:Interval. ∀f:ℕ ⟶ I ⟶ℝ. ∀g:I ⟶ℝ.  (lim n→∞.f[n;x] = λy.g[y] for x ∈ I ⇒ lim n→∞.-(f[n;x]) = λy.-(g[y]) for x ∈ I)
Proof
Definitions occuring in Statement : 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rminus: -(x), 
nat: ℕ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I, 
member: t ∈ T, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_apply: x[s1;s2], 
subtype_rel: A ⊆r B, 
rfun: I ⟶ℝ, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
int_upper: {i...}, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
so_lambda: λ2x y.t[x; y], 
label: ...$L... t, 
subinterval: I ⊆ J , 
le: A ≤ B, 
rsub: x - y, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T
Lemmas referenced : 
i-approx-is-subinterval, 
less_than_wf, 
int_upper_wf, 
set_wf, 
real_wf, 
i-member_wf, 
i-approx_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rminus_wf, 
int_upper_subtype_nat, 
nat_plus_subtype_nat, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_upper_properties, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
icompact_wf, 
fun-converges-to_wf, 
nat_wf, 
rfun_wf, 
interval_wf, 
req_wf, 
subtype_rel_sets, 
radd_wf, 
rmul_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
rminus-radd, 
radd_functionality, 
rminus-rminus, 
radd_comm, 
rminus-as-rmul, 
rmul_functionality, 
req_inversion, 
req_transitivity, 
uiff_transitivity2, 
rleq_functionality, 
rabs_functionality, 
squash_wf, 
true_wf, 
rabs-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
dependent_set_memberEquality, 
setElimination, 
rename, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
productElimination, 
dependent_pairFormation, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
setEquality, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
inrFormation, 
independent_functionElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}I:Interval.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}.  \mforall{}g:I  {}\mrightarrow{}\mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.f[n;x]  =  \mlambda{}y.g[y]  for  x  \mmember{}  I  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.-(f[n;x])  =  \mlambda{}y.-(g[y])  for  x  \mmember{}  I)
 Date html generated: 
2016_10_26-AM-11_13_43
 Last ObjectModification: 
2016_08_28-PM-06_43_55
Theory : reals
Home
Index