Nuprl Lemma : mean-value-theorem
∀a,b:ℝ.
  ((a < b)
  
⇒ (∀f,f':[a, b] ⟶ℝ.
        (f'[x] continuous for x ∈ [a, b]
        
⇒ d(f[x])/dx = λx.f'[x] on [a, b]
        
⇒ (∀e:ℝ. ((r0 < e) 
⇒ (∃x:ℝ. ((x ∈ [a, b]) ∧ (|f[b] - f[a] - f'[x] * (b - a)| ≤ e))))))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
top: Top
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
exists: ∃x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
Rolles-theorem, 
rless_wf, 
int-to-real_wf, 
real_wf, 
derivative_wf, 
rccint_wf, 
i-member_wf, 
continuous_wf, 
rfun_wf, 
rsub_wf, 
rmul_wf, 
member_rccint_lemma, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rleq_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
continuous-mul, 
continuous-const, 
continuous-sub, 
set_wf, 
subtype_rel_self, 
top_wf, 
subtype_rel_dep_function, 
derivative-sub, 
derivative-const-mul, 
derivative-const, 
derivative-id, 
req_weakening, 
itermConstant_wf, 
derivative_functionality, 
rabs_wf, 
rmul_comm, 
rsub_functionality, 
rabs_functionality, 
rleq_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
productEquality, 
computeAll, 
int_eqEquality, 
intEquality, 
productElimination, 
dependent_pairFormation
Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (f'[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  [a,  b]
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  \mwedge{}  (|f[b]  -  f[a]  -  f'[x]  *  (b  -  a)|  \mleq{}  e))))))))
Date html generated:
2017_10_03-PM-00_21_10
Last ObjectModification:
2017_07_28-AM-08_40_10
Theory : reals
Home
Index