Nuprl Lemma : mean-value-theorem

a,b:ℝ.
  ((a < b)
   (∀f,f':[a, b] ⟶ℝ.
        (f'[x] continuous for x ∈ [a, b]
         d(f[x])/dx = λx.f'[x] on [a, b]
         (∀e:ℝ((r0 < e)  (∃x:ℝ((x ∈ [a, b]) ∧ (|f[b] f[a] f'[x] (b a)| ≤ e))))))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rless: x < y rabs: |x| rsub: y rmul: b int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ so_apply: x[s] top: Top and: P ∧ Q cand: c∧ B guard: {T} uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A uiff: uiff(P;Q) subtype_rel: A ⊆B rfun-eq: rfun-eq(I;f;g) r-ap: f(x) exists: x:A. B[x] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  Rolles-theorem rless_wf int-to-real_wf real_wf derivative_wf rccint_wf i-member_wf continuous_wf rfun_wf rsub_wf rmul_wf member_rccint_lemma rleq_weakening_rless rleq_weakening_equal rleq_wf real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 continuous-mul continuous-const continuous-sub set_wf subtype_rel_self top_wf subtype_rel_dep_function derivative-sub derivative-const-mul derivative-const derivative-id req_weakening itermConstant_wf derivative_functionality rabs_wf rmul_comm rsub_functionality rabs_functionality rleq_functionality
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination natural_numberEquality sqequalRule lambdaEquality applyEquality setElimination rename dependent_set_memberEquality setEquality because_Cache isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation productEquality computeAll int_eqEquality intEquality productElimination dependent_pairFormation

Latex:
\mforall{}a,b:\mBbbR{}.
    ((a  <  b)
    {}\mRightarrow{}  (\mforall{}f,f':[a,  b]  {}\mrightarrow{}\mBbbR{}.
                (f'[x]  continuous  for  x  \mmember{}  [a,  b]
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  [a,  b]
                {}\mRightarrow{}  (\mforall{}e:\mBbbR{}.  ((r0  <  e)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  ((x  \mmember{}  [a,  b])  \mwedge{}  (|f[b]  -  f[a]  -  f'[x]  *  (b  -  a)|  \mleq{}  e))))))))



Date html generated: 2017_10_03-PM-00_21_10
Last ObjectModification: 2017_07_28-AM-08_40_10

Theory : reals


Home Index