Nuprl Lemma : partition-split-cons

[I:Interval]
  ∀[a:ℝ]. ∀[bs:ℝ List].
    (partitions(I;[a bs])  (partitions([left-endpoint(I), a];[]) ∧ partitions([a, right-endpoint(I)];bs))) 
  supposing icompact(I)


Proof




Definitions occuring in Statement :  partitions: partitions(I;p) icompact: icompact(I) rccint: [l, u] right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval real: cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q and: P ∧ Q cand: c∧ B prop: partitions: partitions(I;p) frs-non-dec: frs-non-dec(L) all: x:A. B[x] rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False int_seg: {i..j-} nat_plus: + guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: i-finite: i-finite(I) rccint: [l, u] isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True select: L[n] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] bfalse: ff icompact: icompact(I) uiff: uiff(P;Q) subtract: m ge: i ≥  sq_type: SQType(T) right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) endpoints: endpoints(I) outl: outl(x) pi1: fst(t) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  partitions_wf cons_wf real_wf less_than'_wf rsub_wf select_wf nil_wf length_of_nil_lemma nat_plus_properties int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma nat_plus_wf le_wf int_seg_wf length_wf less_than_wf false_wf left-endpoint_wf rccint_wf right-endpoint_wf last_wf list-cases null_nil_lemma right_endpoint_rccint_lemma left_endpoint_rccint_lemma stuck-spread base_wf product_subtype_list null_cons_lemma length_of_cons_lemma list_wf icompact_wf interval_wf add-member-int_seg2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma non_neg_length itermAdd_wf int_term_value_add_lemma lelt_wf add-associates add-swap add-commutes zero-add squash_wf add-subtract-cancel subtype_base_sq int_subtype_base rleq_wf select-cons-tl true_wf equal_wf last_cons iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll minusEquality axiomEquality equalityTransitivity equalitySymmetry imageElimination baseClosed promote_hyp hypothesis_subsumption independent_functionElimination dependent_set_memberEquality addEquality hyp_replacement productEquality cumulativity universeEquality imageMemberEquality instantiate addLevel levelHypothesis

Latex:
\mforall{}[I:Interval]
    \mforall{}[a:\mBbbR{}].  \mforall{}[bs:\mBbbR{}  List].
        (partitions(I;[a  /  bs])
        {}\mRightarrow{}  (partitions([left-endpoint(I),  a];[])  \mwedge{}  partitions([a,  right-endpoint(I)];bs))) 
    supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_41_32
Last ObjectModification: 2017_07_28-AM-07_56_40

Theory : reals


Home Index