Nuprl Lemma : partition-split-cons
∀[I:Interval]
  ∀[a:ℝ]. ∀[bs:ℝ List].
    (partitions(I;[a / bs]) 
⇒ (partitions([left-endpoint(I), a];[]) ∧ partitions([a, right-endpoint(I)];bs))) 
  supposing icompact(I)
Proof
Definitions occuring in Statement : 
partitions: partitions(I;p)
, 
icompact: icompact(I)
, 
rccint: [l, u]
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
real: ℝ
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
partitions: partitions(I;p)
, 
frs-non-dec: frs-non-dec(L)
, 
all: ∀x:A. B[x]
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
i-finite: i-finite(I)
, 
rccint: [l, u]
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
select: L[n]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cons: [a / b]
, 
bfalse: ff
, 
icompact: icompact(I)
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
endpoints: endpoints(I)
, 
outl: outl(x)
, 
pi1: fst(t)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
partitions_wf, 
cons_wf, 
real_wf, 
less_than'_wf, 
rsub_wf, 
select_wf, 
nil_wf, 
length_of_nil_lemma, 
nat_plus_properties, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
nat_plus_wf, 
le_wf, 
int_seg_wf, 
length_wf, 
less_than_wf, 
false_wf, 
left-endpoint_wf, 
rccint_wf, 
right-endpoint_wf, 
last_wf, 
list-cases, 
null_nil_lemma, 
right_endpoint_rccint_lemma, 
left_endpoint_rccint_lemma, 
stuck-spread, 
base_wf, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
list_wf, 
icompact_wf, 
interval_wf, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
add-subtract-cancel, 
subtype_base_sq, 
int_subtype_base, 
rleq_wf, 
select-cons-tl, 
true_wf, 
equal_wf, 
last_cons, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
independent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
hyp_replacement, 
productEquality, 
cumulativity, 
universeEquality, 
imageMemberEquality, 
instantiate, 
addLevel, 
levelHypothesis
Latex:
\mforall{}[I:Interval]
    \mforall{}[a:\mBbbR{}].  \mforall{}[bs:\mBbbR{}  List].
        (partitions(I;[a  /  bs])
        {}\mRightarrow{}  (partitions([left-endpoint(I),  a];[])  \mwedge{}  partitions([a,  right-endpoint(I)];bs))) 
    supposing  icompact(I)
Date html generated:
2017_10_03-AM-09_41_32
Last ObjectModification:
2017_07_28-AM-07_56_40
Theory : reals
Home
Index