Nuprl Lemma : general-partition-sum-from-bound
∀I:Interval
  (icompact(I)
  ⇒ (∀f:{f:I ⟶ℝ| ifun(f;I)} . ∀b:{b:ℝ| (r0 ≤ b) ∧ (∀x:ℝ. ((x ∈ I) ⇒ (|f x| ≤ b)))} . ∀e:{e:ℝ| r0 < e} .
        ∃d:{d:ℝ| r0 < d} 
         ∀p,q:{p:partition(I)| partition-mesh(I;p) ≤ d} . ∀x:partition-choice(full-partition(I;p)).
         ∀y:partition-choice(full-partition(I;q)).
           (|S(f;full-partition(I;q)) - S(f;full-partition(I;p))| ≤ e)))
Proof
Definitions occuring in Statement : 
ifun: ifun(f;I), 
partition-sum: S(f;p), 
partition-choice: partition-choice(p), 
partition-mesh: partition-mesh(I;p), 
full-partition: full-partition(I;p), 
partition: partition(I), 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
icompact: icompact(I), 
rfun: I ⟶ℝ, 
and: P ∧ Q, 
prop: ℙ, 
or: P ∨ Q, 
uimplies: b supposing a, 
squash: ↓T, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
rneq: x ≠ y, 
rev_implies: P ⇐ Q, 
rdiv: (x/y), 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top, 
exists: ∃x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}, 
rgt: x > y, 
subtype_rel: A ⊆r B, 
true: True, 
less_than': less_than'(a;b), 
less_than: a < b
Lemmas referenced : 
interval_wf, 
icompact_wf, 
ifun_wf, 
rfun_wf, 
rabs_wf, 
i-member_wf, 
rleq_wf, 
rless_wf, 
real_wf, 
i-length_wf, 
radd_wf, 
rmul_wf, 
sq_stable__rless, 
int-to-real_wf, 
rless-cases, 
partition-sum-bound-no-mc, 
rmul-is-positive, 
ifun-continuous, 
general-partition-sum-ext, 
rdiv_wf, 
rmul_preserves_rless, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
rinv_wf2, 
rless_functionality, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
partition-choice_wf, 
full-partition_wf, 
partition_wf, 
partition-mesh_wf, 
rsub_wf, 
partition-sum_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rleq_functionality, 
req_weakening, 
rless_irreflexivity, 
rless_transitivity1, 
icompact-length-nonneg, 
real_term_value_minus_lemma, 
req_functionality, 
rabs_functionality, 
rleq_weakening_rless, 
iff_weakening_equal, 
subtype_rel_self, 
rabs-rminus, 
true_wf, 
squash_wf, 
req_wf, 
itermMinus_wf, 
rminus_wf, 
rleq_weakening, 
rless-int, 
real_term_value_add_lemma, 
itermAdd_wf, 
radd_functionality_wrt_rleq, 
r-triangle-inequality2
Rules used in proof : 
productElimination, 
dependent_set_memberEquality_alt, 
applyEquality, 
functionIsType, 
productIsType, 
universeIsType, 
setIsType, 
unionElimination, 
independent_isectElimination, 
because_Cache, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
natural_numberEquality, 
isectElimination, 
rename, 
setElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
inrFormation_alt, 
closedConclusion, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
inhabitedIsType, 
independent_pairFormation
Latex:
\mforall{}I:Interval
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  ifun(f;I)\}  .  \mforall{}b:\{b:\mBbbR{}|  (r0  \mleq{}  b)  \mwedge{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  (|f  x|  \mleq{}  b)))\}  .  \mforall{}e:\{e:\mBbbR{}| 
                                                                                                                                                                                    r0  <  e\}  .
                \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                  \mforall{}p,q:\{p:partition(I)|  partition-mesh(I;p)  \mleq{}  d\}  .  \mforall{}x:partition-choice(full-partition(I;p)).
                  \mforall{}y:partition-choice(full-partition(I;q)).
                      (|S(f;full-partition(I;q))  -  S(f;full-partition(I;p))|  \mleq{}  e)))
Date html generated:
2019_10_30-AM-11_38_21
Last ObjectModification:
2019_10_10-AM-10_21_07
Theory : reals_2
Home
Index