Nuprl Lemma : ml-reduce-sq

[A,B:Type].
  (∀[f:A ⟶ B ⟶ B]. ∀[l:A List]. ∀[b:B].  (ml-reduce(f;b;l) reduce(f;b;l))) supposing 
     ((valueall-type(A) ∧ A) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  ml-reduce: ml-reduce(f;b;l) reduce: reduce(f;k;as) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q ml-reduce: ml-reduce(f;b;l) top: Top ml_apply: f(x) spreadcons: spreadcons callbyvalueall: callbyvalueall evalall: evalall(t) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] squash: T has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m sq_type: SQType(T) less_than: a < b bfalse: ff
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases reduce_nil_lemma function-value-type valueall-type-value-type value-type_wf function-valueall-type valueall-type-has-valueall evalall-reduce null_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base reduce_cons_lemma list_wf list-valueall-type cons_wf null_cons_lemma valueall-type_wf reduce_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom cumulativity productElimination applyEquality because_Cache unionElimination voidEquality callbyvalueReduce sqleReflexivity dependent_pairFormation imageMemberEquality baseClosed functionEquality independent_pairFormation promote_hyp hypothesis_subsumption applyLambdaEquality imageElimination addEquality dependent_set_memberEquality minusEquality equalityTransitivity equalitySymmetry intEquality instantiate productEquality universeEquality functionExtensionality

Latex:
\mforall{}[A,B:Type].
    (\mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[l:A  List].  \mforall{}[b:B].    (ml-reduce(f;b;l)  \msim{}  reduce(f;b;l)))  supposing 
          ((valueall-type(A)  \mwedge{}  A)  and 
          valueall-type(B))



Date html generated: 2017_09_29-PM-05_51_00
Last ObjectModification: 2017_05_10-PM-06_50_40

Theory : ML


Home Index