Nuprl Lemma : implies-k-1-continuous

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ Type].
  ((∀[A,B:ℕk ⟶ Type].  F[A] ⊆F[B] supposing A ⊆ B)
   (∀j:ℕk. ∀Z:ℕk ⟶ Type.  Continuous(X.F[λi.if (i =z j) then else fi ]))
   k-1-continuous{i:l}(k;T.F[T]))


Proof




Definitions occuring in Statement :  k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) k-subtype: A ⊆ B type-continuous: Continuous(T.F[T]) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) k-intersection: n. X[n] all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  lelt: i ≤ j < k bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q type-continuous: Continuous(T.F[T]) squash: T nequal: a ≠ b ∈  true: True cand: c∧ B k-subtype: A ⊆ B
Lemmas referenced :  k-subtype_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int_seg_wf istype-universe type-continuous_wf ifthenelse_wf eq_int_wf subtype_rel_wf istype-nat intformless_wf int_formula_prop_less_lemma ge_wf istype-less_than subtract-1-ge-0 subtype_rel_isect-2 nat_wf lt_int_wf subtype_rel-equal eqtt_to_assert assert_of_lt_int int_seg_properties eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__lt squash_wf true_wf assert_of_eq_int int_subtype_base intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int subtype_rel_self subtype_rel_isect_general imax_wf imax_nat decidable__equal_int subtype_rel_transitivity le_wf imax_unfold iff_weakening_equal le_int_wf assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalRule Error :functionIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality Error :dependent_set_memberEquality_alt,  addEquality setElimination rename hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation axiomEquality Error :functionIsTypeImplies,  because_Cache instantiate universeEquality Error :isectIsType,  Error :isectIsTypeImplies,  intWeakElimination isectEquality Error :functionExtensionality_alt,  equalityElimination productElimination equalityTransitivity equalitySymmetry Error :equalityIstype,  promote_hyp cumulativity Error :productIsType,  hyp_replacement imageElimination intEquality imageMemberEquality baseClosed applyLambdaEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  Type].
    ((\mforall{}[A,B:\mBbbN{}k  {}\mrightarrow{}  Type].    F[A]  \msubseteq{}r  F[B]  supposing  A  \msubseteq{}  B)
    {}\mRightarrow{}  (\mforall{}j:\mBbbN{}k.  \mforall{}Z:\mBbbN{}k  {}\mrightarrow{}  Type.    Continuous(X.F[\mlambda{}i.if  (i  =\msubz{}  j)  then  X  else  Z  i  fi  ]))
    {}\mRightarrow{}  k-1-continuous\{i:l\}(k;T.F[T]))



Date html generated: 2019_06_20-PM-01_13_05
Last ObjectModification: 2019_01_02-PM-03_59_13

Theory : co-recursion-2


Home Index