Nuprl Lemma : corec-ext1
∀[F:Type ⟶ Type]. corec(T.F[T]) ≡ F[corec(T.F[T])] supposing Continuous+(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T]), 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
corec: corec(T.F[T]), 
strong-type-continuous: Continuous+(T.F[T]), 
so_apply: x[s], 
nat: ℕ, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
primrec_wf, 
top_wf, 
int_seg_wf, 
nat_wf, 
ext-eq_transitivity, 
strong-type-continuous_wf, 
decidable__le, 
false_wf, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
primrec-unroll, 
subtype_rel-equal, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtract_wf, 
not-equal-2, 
minus-minus, 
le_antisymmetry_iff, 
squash_wf, 
true_wf, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
instantiate, 
extract_by_obid, 
universeEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
setElimination, 
rename, 
sqequalRule, 
independent_pairFormation, 
isect_memberEquality, 
isectEquality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_set_memberEquality, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
voidEquality, 
intEquality, 
minusEquality, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  corec(T.F[T])  \mequiv{}  F[corec(T.F[T])]  supposing  Continuous+(T.F[T])
Date html generated:
2017_04_14-AM-07_41_49
Last ObjectModification:
2017_02_27-PM-03_13_43
Theory : co-recursion
Home
Index