Nuprl Lemma : corec-ext1
∀[F:Type ⟶ Type]. corec(T.F[T]) ≡ F[corec(T.F[T])] supposing Continuous+(T.F[T])
Proof
Definitions occuring in Statement :
corec: corec(T.F[T])
,
strong-type-continuous: Continuous+(T.F[T])
,
ext-eq: A ≡ B
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
corec: corec(T.F[T])
,
strong-type-continuous: Continuous+(T.F[T])
,
so_apply: x[s]
,
nat: ℕ
,
ext-eq: A ≡ B
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
guard: {T}
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
uiff: uiff(P;Q)
,
sq_stable: SqStable(P)
,
squash: ↓T
,
subtract: n - m
,
top: Top
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
nequal: a ≠ b ∈ T
Lemmas referenced :
primrec_wf,
top_wf,
int_seg_wf,
nat_wf,
ext-eq_transitivity,
strong-type-continuous_wf,
decidable__le,
false_wf,
not-le-2,
sq_stable__le,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
le_wf,
primrec-unroll,
subtype_rel-equal,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
subtract_wf,
not-equal-2,
minus-minus,
le_antisymmetry_iff,
squash_wf,
true_wf,
minus-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
instantiate,
extract_by_obid,
universeEquality,
hypothesisEquality,
hypothesis,
applyEquality,
functionExtensionality,
cumulativity,
natural_numberEquality,
setElimination,
rename,
sqequalRule,
independent_pairFormation,
isect_memberEquality,
isectEquality,
because_Cache,
independent_isectElimination,
productElimination,
independent_pairEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
dependent_set_memberEquality,
addEquality,
dependent_functionElimination,
unionElimination,
lambdaFormation,
voidElimination,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
voidEquality,
intEquality,
minusEquality,
equalityElimination,
dependent_pairFormation,
promote_hyp
Latex:
\mforall{}[F:Type {}\mrightarrow{} Type]. corec(T.F[T]) \mequiv{} F[corec(T.F[T])] supposing Continuous+(T.F[T])
Date html generated:
2017_04_14-AM-07_41_49
Last ObjectModification:
2017_02_27-PM-03_13_43
Theory : co-recursion
Home
Index