Nuprl Lemma : corec-ext1

[F:Type ⟶ Type]. corec(T.F[T]) ≡ F[corec(T.F[T])] supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a corec: corec(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] nat: ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B guard: {T} prop: so_lambda: λ2x.t[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  primrec_wf top_wf int_seg_wf nat_wf ext-eq_transitivity strong-type-continuous_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf primrec-unroll subtype_rel-equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract_wf not-equal-2 minus-minus le_antisymmetry_iff squash_wf true_wf minus-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution isectElimination thin lambdaEquality instantiate extract_by_obid universeEquality hypothesisEquality hypothesis applyEquality functionExtensionality cumulativity natural_numberEquality setElimination rename sqequalRule independent_pairFormation isect_memberEquality isectEquality because_Cache independent_isectElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality addEquality dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination imageMemberEquality baseClosed imageElimination voidEquality intEquality minusEquality equalityElimination dependent_pairFormation promote_hyp

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  corec(T.F[T])  \mequiv{}  F[corec(T.F[T])]  supposing  Continuous+(T.F[T])



Date html generated: 2017_04_14-AM-07_41_49
Last ObjectModification: 2017_02_27-PM-03_13_43

Theory : co-recursion


Home Index