Nuprl Lemma : equal-zero-streams

fix((λx.<⋅x>)) fix((λx.<⋅, ⋅x>))


Proof




Definitions occuring in Statement :  it: fix: fix(F) lambda: λx.A[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) compose: g sq_stable: SqStable(P) squash: T nat_plus: +
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__int_equal subtype_base_sq set_subtype_base int_subtype_base lelt_wf subtype_rel_self int_seg_properties le_wf fun_exp0_lemma bottom-sqle fun_exp1_lemma bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf decidable__lt not-lt-2 not-equal-2 le-add-cancel-alt nat_wf not-le-2 sq_stable__le add-mul-special zero-mul fun_exp_unroll_1 minus-zero le-add-cancel2
Rules used in proof :  sqequalSqle fixpointLeast cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination axiomSqleEquality productElimination unionElimination independent_pairFormation addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache instantiate dependent_set_memberEquality equalityTransitivity equalitySymmetry hypothesis_subsumption cumulativity divergentSqle sqleRule sqleReflexivity baseClosed imageMemberEquality imageElimination multiplyEquality baseApply closedConclusion

Latex:
fix((\mlambda{}x.<\mcdot{},  x>))  \msim{}  fix((\mlambda{}x.<\mcdot{},  \mcdot{},  x>))



Date html generated: 2018_05_21-PM-00_05_44
Last ObjectModification: 2018_05_19-AM-07_01_40

Theory : co-recursion


Home Index