Nuprl Lemma : int2nat2int

[i:ℤ]. (nat2int(int2nat(i)) i ∈ ℤ)


Proof




Definitions occuring in Statement :  nat2int: nat2int(m) int2nat: int2nat(i) uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] int2nat: int2nat(i) nat2int: nat2int(m) member: t ∈ T has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top bfalse: ff int_nzero: -o nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) guard: {T} false: False prop: uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B nat_plus: + nat: ge: i ≥  remainder: rem m
Lemmas referenced :  eq_int_wf remainder_wfa value-type-has-value int-value-type lt_int_wf istype-top istype-void subtract_wf subtype_base_sq int_subtype_base nequal_wf eqtt_to_assert assert_of_eq_int assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than divide-exact neg_assert_of_eq_int istype-int decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf equal_wf add_functionality_wrt_eq mul_com iff_weakening_equal squash_wf true_wf istype-universe int_nzero_wf add_com subtype_rel_self decidable__lt int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_minus_lemma int_term_value_subtract_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermMinus_wf itermSubtract_wf intformand_wf istype-le int_formula_prop_le_lemma intformle_wf decidable__le rem_invariant int_term_value_add_lemma itermAdd_wf nat_properties false_wf multiply-is-int-iff add-is-int-iff int_term_value_mul_lemma itermMultiply_wf rem_bounds_1 div_rem_sum mul-commutes zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule callbyvalueReduce intEquality independent_isectElimination hypothesis hypothesisEquality closedConclusion natural_numberEquality because_Cache Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination lessCases independent_pairFormation baseClosed equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  promote_hyp voidElimination addEquality multiplyEquality minusEquality Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :dependent_set_memberEquality_alt,  instantiate cumulativity sqequalBase Error :universeIsType,  productElimination int_eqReduceTrueSq imageElimination Error :dependent_pairFormation_alt,  int_eqReduceFalseSq approximateComputation Error :lambdaEquality_alt,  applyEquality universeEquality int_eqEquality rename setElimination applyLambdaEquality baseApply pointwiseFunctionality

Latex:
\mforall{}[i:\mBbbZ{}].  (nat2int(int2nat(i))  =  i)



Date html generated: 2019_06_20-PM-02_52_15
Last ObjectModification: 2019_03_06-AM-10_52_13

Theory : continuity


Home Index