Nuprl Lemma : strong-continuity2-no-inner-squash-bound
∀F:(ℕ ⟶ ℕ) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ
       ∃n:ℕ. (F f < n ∧ ((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) ⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
isl: isl(x), 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
true: True, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
isl: isl(x), 
prop: ℙ, 
so_lambda: λ2x.t[x], 
outl: outl(x), 
so_apply: x[s], 
ge: i ≥ j , 
pi1: fst(t), 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
guard: {T}, 
squash: ↓T, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
bfalse: ff, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
cand: A c∧ B, 
sq_type: SQType(T), 
istype: istype(T), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
quotient: x,y:A//B[x; y]
Lemmas referenced : 
strong-continuity2-no-inner-squash, 
nat_wf, 
int_seg_wf, 
unit_wf2, 
subtype_rel_function, 
int_seg_subtype_nat, 
istype-void, 
subtype_rel_self, 
assert_wf, 
btrue_wf, 
bfalse_wf, 
decidable__exists_int_seg, 
less_than_wf, 
decidable__and2, 
decidable__assert, 
decidable__lt, 
nat_properties, 
le_wf, 
it_wf, 
istype-false, 
int_seg_subtype, 
sq_stable__le, 
le_weakening2, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
true_wf, 
imax_wf, 
add_nat_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
decidable_wf, 
exists_wf, 
imax_ub, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
squash_wf, 
istype-universe, 
iff_weakening_equal, 
isl_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_elim, 
btrue_neq_bfalse, 
union_subtype_base, 
set_subtype_base, 
int_subtype_base, 
unit_subtype_base, 
subtype_rel_union, 
quotient_wf, 
all_wf, 
equiv_rel_true, 
quotient-member-eq, 
member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
Error :functionIsType, 
Error :universeIsType, 
hypothesis, 
Error :inhabitedIsType, 
sqequalRule, 
Error :productIsType, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
Error :unionIsType, 
because_Cache, 
Error :equalityIsType1, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
Error :inlEquality_alt, 
Error :isectIsType, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
productElimination, 
instantiate, 
Error :lambdaEquality_alt, 
productEquality, 
Error :isect_memberEquality_alt, 
Error :dependent_pairFormation_alt, 
functionExtensionality, 
Error :dependent_set_memberEquality_alt, 
Error :inrEquality_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
int_eqEquality, 
voidElimination, 
addEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
functionEquality, 
Error :inrFormation_alt, 
universeEquality, 
unionEquality, 
cumulativity, 
Error :inlFormation_alt, 
intEquality, 
pertypeElimination, 
Error :equalityIsType4
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              \mexists{}n:\mBbbN{}
                (F  f  <  n  \mwedge{}  ((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))))
Date html generated:
2019_06_20-PM-02_53_46
Last ObjectModification:
2018_10_06-PM-11_55_25
Theory : continuity
Home
Index