Nuprl Lemma : strong-continuity2-no-inner-squash-bound

F:(ℕ ⟶ ℕ) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ
       ∃n:ℕ(F f < n ∧ ((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl (F f)) ∈ (ℕ?))))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] uall: [x:A]. B[x] nat: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A isl: isl(x) prop: so_lambda: λ2x.t[x] outl: outl(x) so_apply: x[s] ge: i ≥  pi1: fst(t) int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k guard: {T} squash: T assert: b ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top bfalse: ff uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q true: True cand: c∧ B sq_type: SQType(T) istype: istype(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] quotient: x,y:A//B[x; y]
Lemmas referenced :  strong-continuity2-no-inner-squash nat_wf int_seg_wf unit_wf2 subtype_rel_function int_seg_subtype_nat istype-void subtype_rel_self assert_wf btrue_wf bfalse_wf decidable__exists_int_seg less_than_wf decidable__and2 decidable__assert decidable__lt nat_properties le_wf it_wf istype-false int_seg_subtype sq_stable__le le_weakening2 int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf true_wf imax_wf add_nat_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf decidable_wf exists_wf imax_ub intformless_wf int_formula_prop_less_lemma equal_wf squash_wf istype-universe iff_weakening_equal isl_wf subtype_base_sq bool_wf bool_subtype_base assert_elim btrue_neq_bfalse union_subtype_base set_subtype_base int_subtype_base unit_subtype_base subtype_rel_union quotient_wf all_wf equiv_rel_true quotient-member-eq member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality Error :functionIsType,  Error :universeIsType,  hypothesis Error :inhabitedIsType,  sqequalRule Error :productIsType,  isectElimination natural_numberEquality setElimination rename Error :unionIsType,  because_Cache Error :equalityIsType1,  applyEquality independent_isectElimination independent_pairFormation Error :inlEquality_alt,  Error :isectIsType,  unionElimination equalityTransitivity equalitySymmetry independent_functionElimination productElimination instantiate Error :lambdaEquality_alt,  productEquality Error :isect_memberEquality_alt,  Error :dependent_pairFormation_alt,  functionExtensionality Error :dependent_set_memberEquality_alt,  Error :inrEquality_alt,  imageMemberEquality baseClosed imageElimination approximateComputation int_eqEquality voidElimination addEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion functionEquality Error :inrFormation_alt,  universeEquality unionEquality cumulativity Error :inlFormation_alt,  intEquality pertypeElimination Error :equalityIsType4

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              \mexists{}n:\mBbbN{}
                (F  f  <  n  \mwedge{}  ((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))))



Date html generated: 2019_06_20-PM-02_53_46
Last ObjectModification: 2018_10_06-PM-11_55_25

Theory : continuity


Home Index