Nuprl Lemma : strong-continuity2-no-inner-squash-unique-bound

F:(ℕ ⟶ ℕ) ⟶ ℕ
  ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ. ∃n:ℕ(F f < n ∧ ((M f) (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  (m n ∈ ℕ)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s] exists: x:A. B[x] guard: {T} unit: Unit int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt true: True outl: outl(x)
Lemmas referenced :  strong-continuity2-no-inner-squash-bound implies-quotient-true exists_wf nat_wf int_seg_wf unit_wf2 all_wf less_than_wf equal_wf subtype_rel_function int_seg_subtype_nat false_wf subtype_rel_self subtype_rel_union assert_wf isl_wf strong-continuity-test-bound_wf decidable__assert nat_properties decidable__le full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf lelt_wf unit_subtype_base int_subtype_base le_wf set_subtype_base union_subtype_base subtype_base_sq satisfiable-full-omega-tt subtype_rel_dep_function strong-continuity-test-bound-prop1 and_wf btrue_wf bool_wf bool_subtype_base outl_wf int_seg_properties intformeq_wf int_formula_prop_eq_lemma decidable__lt intformless_wf int_formula_prop_less_lemma strong-continuity-test-bound-prop3 not-isl-assert-isr strong-continuity-test-bound-prop4 decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination functionEquality hypothesis natural_numberEquality setElimination rename unionEquality because_Cache sqequalRule lambdaEquality productEquality applyEquality independent_isectElimination independent_pairFormation inlEquality independent_functionElimination productElimination dependent_pairFormation unionElimination functionExtensionality inrEquality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality applyLambdaEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality cumulativity instantiate computeAll hyp_replacement promote_hyp

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
    \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mexists{}n:\mBbbN{}.  (F  f  <  n  \mwedge{}  ((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n)))))



Date html generated: 2019_06_20-PM-02_53_52
Last ObjectModification: 2018_08_22-AM-00_06_08

Theory : continuity


Home Index