Nuprl Lemma : poss-maj-unanimous
∀T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x,y:T.  ((poss-maj(eq;L;x) = <||L||, y> ∈ (ℕ × T)) 
⇒ (∀z∈L.z = y ∈ T))
Proof
Definitions occuring in Statement : 
poss-maj: poss-maj(eq;L;x)
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
list: T List
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
l_all: (∀x∈L.P[x])
, 
sq_type: SQType(T)
, 
guard: {T}
, 
deq: EqDecider(T)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
le: A ≤ B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
poss-maj-invariant, 
poss-maj_wf, 
nat_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length_wf_nat, 
and_wf, 
equal_wf, 
pi1_wf, 
le_wf, 
pi2_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
eqof_wf, 
not_wf, 
int_seg_wf, 
subtract_wf, 
count_wf, 
bnot_wf, 
all_wf, 
list_wf, 
deq_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
count-length-filter, 
pos_length, 
filter_wf5, 
equal-wf-T-base, 
assert_of_null, 
filter_is_empty, 
lelt_wf, 
length-filter
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
productEquality, 
productElimination, 
rename, 
sqequalRule, 
isectElimination, 
setElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
applyLambdaEquality, 
applyEquality, 
promote_hyp, 
instantiate, 
independent_functionElimination, 
hyp_replacement, 
independent_pairEquality, 
equalityElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
impliesLevelFunctionality, 
functionEquality, 
universeEquality, 
baseClosed
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x,y:T.    ((poss-maj(eq;L;x)  =  <||L||,  y>)  {}\mRightarrow{}  (\mforall{}z\mmember{}L.z  =  y))
Date html generated:
2017_04_17-AM-09_08_39
Last ObjectModification:
2017_02_27-PM-05_18_06
Theory : decidable!equality
Home
Index