Nuprl Lemma : poss-maj-unanimous

T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x,y:T.  ((poss-maj(eq;L;x) = <||L||, y> ∈ (ℕ × T))  (∀z∈L.z y ∈ T))


Proof




Definitions occuring in Statement :  poss-maj: poss-maj(eq;L;x) l_all: (∀x∈L.P[x]) length: ||as|| list: List deq: EqDecider(T) nat: all: x:A. B[x] implies:  Q pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B pi2: snd(t) l_all: (∀x∈L.P[x]) sq_type: SQType(T) guard: {T} deq: EqDecider(T) int_seg: {i..j-} lelt: i ≤ j < k bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) eqof: eqof(d) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  poss-maj-invariant poss-maj_wf nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf length_wf_nat and_wf equal_wf pi1_wf le_wf pi2_wf subtype_base_sq set_subtype_base int_subtype_base select_wf int_seg_properties length_wf decidable__lt intformless_wf int_formula_prop_less_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot assert_wf eqof_wf not_wf int_seg_wf subtract_wf count_wf bnot_wf all_wf list_wf deq_wf itermSubtract_wf int_term_value_subtract_lemma count-length-filter pos_length filter_wf5 equal-wf-T-base assert_of_null filter_is_empty lelt_wf length-filter
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality cumulativity productEquality productElimination rename sqequalRule isectElimination setElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality because_Cache equalitySymmetry equalityTransitivity applyLambdaEquality applyEquality promote_hyp instantiate independent_functionElimination hyp_replacement independent_pairEquality equalityElimination addLevel impliesFunctionality levelHypothesis impliesLevelFunctionality functionEquality universeEquality baseClosed

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x,y:T.    ((poss-maj(eq;L;x)  =  <||L||,  y>)  {}\mRightarrow{}  (\mforall{}z\mmember{}L.z  =  y))



Date html generated: 2017_04_17-AM-09_08_39
Last ObjectModification: 2017_02_27-PM-05_18_06

Theory : decidable!equality


Home Index