Nuprl Lemma : poss-maj-invariant
∀T:Type. ∀eq:EqDecider(T). ∀L:T List. ∀x:T.
  let n,z = poss-maj(eq;L;x) 
  in ((count(eq z;L) - count(λt.(¬b(eq z t));L)) ≤ n)
     ∧ (∀y:T. ((¬↑(eq z y)) 
⇒ (n ≤ (count(λt.(¬b(eq y t));L) - count(eq y;L)))))
Proof
Definitions occuring in Statement : 
poss-maj: poss-maj(eq;L;x)
, 
count: count(P;L)
, 
list: T List
, 
deq: EqDecider(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
spread: spread def, 
subtract: n - m
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
less_than: a < b
, 
squash: ↓T
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
deq: EqDecider(T)
, 
so_apply: x[s]
, 
count: count(P;L)
, 
poss-maj: poss-maj(eq;L;x)
, 
list_accum: list_accum, 
nil: []
, 
it: ⋅
, 
subtract: n - m
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
eqof: eqof(d)
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
int_upper: {i...}
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
false_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
length_wf, 
non_neg_length, 
nat_properties, 
decidable__lt, 
lelt_wf, 
less_than_wf, 
decidable__assert, 
null_wf, 
list-cases, 
product_subtype_list, 
null_cons_lemma, 
last-lemma-sq, 
pos_length, 
iff_transitivity, 
not_wf, 
equal-wf-T-base, 
list_wf, 
assert_wf, 
bnot_wf, 
assert_of_null, 
iff_weakening_uiff, 
assert_of_bnot, 
firstn_wf, 
length_firstn, 
all_wf, 
count_wf, 
equal_wf, 
set_wf, 
primrec-wf2, 
nat_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
length_wf_nat, 
deq_wf, 
reduce_nil_lemma, 
last_wf, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
poss-maj_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
nequal-le-implies, 
zero-add, 
cons_wf, 
nil_wf, 
subtract-is-int-iff, 
le_weakening2, 
int_upper_properties, 
count-append, 
count-single, 
eqof_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addLevel, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
cumulativity, 
imageElimination, 
independent_functionElimination, 
promote_hyp, 
baseClosed, 
impliesFunctionality, 
productEquality, 
functionEquality, 
addEquality, 
universeEquality, 
equalityElimination, 
instantiate, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
impliesLevelFunctionality, 
hyp_replacement
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x:T.
    let  n,z  =  poss-maj(eq;L;x) 
    in  ((count(eq  z;L)  -  count(\mlambda{}t.(\mneg{}\msubb{}(eq  z  t));L))  \mleq{}  n)
          \mwedge{}  (\mforall{}y:T.  ((\mneg{}\muparrow{}(eq  z  y))  {}\mRightarrow{}  (n  \mleq{}  (count(\mlambda{}t.(\mneg{}\msubb{}(eq  y  t));L)  -  count(eq  y;L)))))
Date html generated:
2017_04_17-AM-09_08_31
Last ObjectModification:
2017_02_27-PM-05_18_12
Theory : decidable!equality
Home
Index