Nuprl Lemma : stamps-example
∀n:ℕ. ∃i:ℕ. (∃j:ℕ [((n + 8) = ((3 * i) + (5 * j)) ∈ ℤ)])
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
subtract: n - m
, 
true: True
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
adjust_div: adjust_div(b;a)
Lemmas referenced : 
nat_wf, 
sq_exists_wf, 
equal-wf-base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
less_than_wf, 
primrec-wf2, 
exists_wf, 
istype-false, 
zero-add, 
mul-commutes, 
istype-void, 
sq_stable__equal, 
decidable__le, 
subtract_wf, 
set-value-type, 
equal_wf, 
int-value-type, 
not-le-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
sq_stable__le, 
add-zero, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
one-mul, 
subtype_base_sq, 
decidable__int_equal, 
not-equal-2, 
mul-associates, 
mul-distributes, 
le-add-cancel2, 
nat_properties, 
less-iff-le, 
le_reflexive, 
omega-shadow, 
mul-swap, 
divide-le, 
squash_wf, 
true_wf, 
minus-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
rename, 
setElimination, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
Error :lambdaEquality_alt, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
natural_numberEquality, 
Error :inhabitedIsType, 
independent_isectElimination, 
Error :setIsType, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :equalityIsType4, 
Error :dependent_pairFormation_alt, 
Error :dependent_set_memberFormation_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
cutEval, 
Error :equalityIsType1, 
addEquality, 
independent_functionElimination, 
minusEquality, 
imageMemberEquality, 
imageElimination, 
multiplyEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
hyp_replacement
Latex:
\mforall{}n:\mBbbN{}.  \mexists{}i:\mBbbN{}.  (\mexists{}j:\mBbbN{}  [((n  +  8)  =  ((3  *  i)  +  (5  *  j)))])
Date html generated:
2019_06_20-PM-00_26_09
Last ObjectModification:
2018_10_09-AM-09_30_44
Theory : int_1
Home
Index