Nuprl Lemma : divide-le

[a:ℕ+]. ∀[b,x:ℤ].  uiff(b ≤ (a x);adjust_div(b;a) ≤ x)


Proof




Definitions occuring in Statement :  adjust_div: adjust_div(b;a) nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B multiply: m int:
Definitions unfolded in proof :  adjust_div: adjust_div(b;a) member: t ∈ T uall: [x:A]. B[x] nat_plus: + nequal: a ≠ b ∈  not: ¬A implies:  Q false: False guard: {T} uimplies: supposing a all: x:A. B[x] prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T le: A ≤ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) subtract: m nat: int_lower: {...i} ge: i ≥  gt: i > j
Lemmas referenced :  lt_int_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot less_than'_wf adjust_div_wf subtype_rel_sets nequal_wf multiply-is-int-iff set_subtype_base int_subtype_base equal-wf-base le_wf nat_plus_wf decidable__le false_wf not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-commutes zero-add add_functionality_wrt_le le-add-cancel2 mul_preserves_le nat_plus_subtype_nat div_rem_sum subtract_wf mul-commutes add-mul-special two-mul mul-distributes-right zero-mul add-zero one-mul le_reflexive less-iff-le omega-shadow mul-distributes mul-associates mul-swap le-add-cancel-alt add-is-int-iff rem_bounds_1 le_weakening2 rem_bounds_2 minus-zero le-add-cancel not-lt-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality remainderEquality because_Cache setElimination rename hypothesis lambdaFormation hypothesisEquality independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination intEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination sqequalRule lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidEquality imageMemberEquality baseClosed imageElimination independent_pairEquality lambdaEquality axiomEquality dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality applyEquality setEquality baseApply closedConclusion multiplyEquality addEquality divideEquality minusEquality sqequalIntensionalEquality dependent_set_memberEquality

Latex:
\mforall{}[a:\mBbbN{}\msupplus{}].  \mforall{}[b,x:\mBbbZ{}].    uiff(b  \mleq{}  (a  *  x);adjust\_div(b;a)  \mleq{}  x)



Date html generated: 2017_04_14-AM-07_19_44
Last ObjectModification: 2017_02_27-PM-02_54_03

Theory : arithmetic


Home Index