Nuprl Lemma : rem_base_case_z
∀[a:ℤ]. ∀[b:ℤ-o].  (a rem b) = a ∈ ℤ supposing |a| < |b|
Proof
Definitions occuring in Statement : 
absval: |i|
, 
int_nzero: ℤ-o
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
guard: {T}
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nequal: a ≠ b ∈ T 
, 
nat: ℕ
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
int_lower: {...i}
Lemmas referenced : 
nat_wf, 
absval_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
iff_weakening_equal, 
le-add-cancel, 
zero-add, 
add-commutes, 
add-swap, 
int_nzero_wf, 
add-associates, 
add_functionality_wrt_le, 
less-iff-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_nzero_properties, 
rem_base_case, 
equal_wf, 
less_than_wf, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
absval_unfold, 
rem_sym, 
int_subtype_base, 
full-omega-unsat, 
istype-int, 
istype-le, 
itermMinus_wf, 
int_term_value_minus_lemma, 
istype-less_than, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
add-zero, 
minus-zero, 
minus-add, 
condition-implies-le, 
not-equal-2, 
rem_2_to_1, 
rem_3_to_1
Rules used in proof : 
axiomEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
addEquality, 
computeAll, 
int_eqEquality, 
dependent_pairFormation, 
dependent_functionElimination, 
dependent_set_memberEquality, 
intEquality, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
voidEquality, 
voidElimination, 
independent_pairFormation, 
isect_memberEquality, 
axiomSqEquality, 
lessCases, 
independent_isectElimination, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
lambdaFormation, 
natural_numberEquality, 
minusEquality, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality_alt, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
Error :memTop, 
universeIsType, 
universeEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (a  rem  b)  =  a  supposing  |a|  <  |b|
Date html generated:
2020_05_19-PM-09_41_29
Last ObjectModification:
2019_12_28-PM-03_31_57
Theory : int_2
Home
Index