Nuprl Lemma : rem_base_case_z

[a:ℤ]. ∀[b:ℤ-o].  (a rem b) a ∈ ℤ supposing |a| < |b|


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o less_than: a < b uimplies: supposing a uall: [x:A]. B[x] remainder: rem m int: equal: t ∈ T
Definitions unfolded in proof :  assert: b ifthenelse: if then else fi  bnot: ¬bb sq_type: SQType(T) bfalse: ff guard: {T} le: A ≤ B subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q nat_plus: + exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) nequal: a ≠ b ∈  nat: prop: false: False not: ¬A squash: T true: True top: Top less_than': less_than'(a;b) less_than: a < b and: P ∧ Q uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] int_nzero: -o uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] subtract: m int_lower: {...i}
Lemmas referenced :  nat_wf absval_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert iff_weakening_equal le-add-cancel zero-add add-commutes add-swap int_nzero_wf add-associates add_functionality_wrt_le less-iff-le not-lt-2 false_wf decidable__lt le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_nzero_properties rem_base_case equal_wf less_than_wf top_wf assert_of_lt_int eqtt_to_assert bool_wf lt_int_wf absval_unfold rem_sym int_subtype_base full-omega-unsat istype-int istype-le itermMinus_wf int_term_value_minus_lemma istype-less_than squash_wf true_wf istype-universe subtype_rel_self int_formula_prop_eq_lemma intformeq_wf decidable__equal_int add-zero minus-zero minus-add condition-implies-le not-equal-2 rem_2_to_1 rem_3_to_1
Rules used in proof :  axiomEquality cumulativity instantiate promote_hyp addEquality computeAll int_eqEquality dependent_pairFormation dependent_functionElimination dependent_set_memberEquality intEquality lambdaEquality applyEquality independent_functionElimination imageElimination baseClosed imageMemberEquality voidEquality voidElimination independent_pairFormation isect_memberEquality axiomSqEquality lessCases independent_isectElimination productElimination equalitySymmetry equalityTransitivity equalityElimination unionElimination lambdaFormation natural_numberEquality minusEquality because_Cache rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid sqequalRule thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt Error :memTop,  universeIsType universeEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (a  rem  b)  =  a  supposing  |a|  <  |b|



Date html generated: 2020_05_19-PM-09_41_29
Last ObjectModification: 2019_12_28-PM-03_31_57

Theory : int_2


Home Index