Nuprl Lemma : append-segment

T:Type. ∀as:T List. ∀i:{0...||as||}. ∀j:{i...||as||}. ∀k:{j...||as||}.
  (((as[i..j-]) (as[j..k-])) (as[i..k-]) ∈ (T List))


Proof




Definitions occuring in Statement :  segment: as[m..n-] length: ||as|| append: as bs list: List int_iseg: {i...j} all: x:A. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  segment: as[m..n-] all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q int_iseg: {i...j} cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B firstn: firstn(n;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] append: as bs nth_tl: nth_tl(n;as) bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q le: A ≤ B cand: c∧ B subtract: m le_int: i ≤j lt_int: i <j true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases int_iseg_wf length_wf nil_wf product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf cons_wf istype-nat list_wf istype-universe nth_tl_nil list_ind_nil_lemma le_int_wf eqtt_to_assert assert_of_le_int reduce_tl_cons_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf length_of_cons_lemma non_neg_length int_iseg_properties add-is-int-iff false_wf first0 subtype_rel_list top_wf firstn_wf istype-false list_ind_cons_lemma lt_int_wf assert_of_lt_int less_than_wf squash_wf true_wf minus-one-mul add-commutes minus-add minus-minus add-associates add-swap zero-add
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination voidEquality promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase universeEquality equalityElimination cumulativity addEquality productEquality pointwiseFunctionality Error :productIsType,  multiplyEquality minusEquality imageMemberEquality

Latex:
\mforall{}T:Type.  \mforall{}as:T  List.  \mforall{}i:\{0...||as||\}.  \mforall{}j:\{i...||as||\}.  \mforall{}k:\{j...||as||\}.
    (((as[i..j\msupminus{}])  @  (as[j..k\msupminus{}]))  =  (as[i..k\msupminus{}]))



Date html generated: 2019_06_20-PM-01_34_53
Last ObjectModification: 2019_01_02-PM-00_29_18

Theory : list_1


Home Index