Nuprl Lemma : l-first-when-none

[T:Type]. ∀[f:T ⟶ 𝔹]. ∀[L:T List].  l-first(x.f[x];L) inr x.Ax)  supposing (∀x∈L.¬↑f[x])


Proof




Definitions occuring in Statement :  l-first: l-first(x.f[x];L) l_all: (∀x∈L.P[x]) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] not: ¬A lambda: λx.A[x] function: x:A ⟶ B[x] inr: inr  universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  l-first: l-first(x.f[x];L) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) exposed-it: exposed-it bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B nat_plus: + true: True select: L[n] subtract: m
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf l_all_wf not_wf assert_wf l_member_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma l_all_wf_nil product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma bool_wf eqtt_to_assert cons_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf length_of_cons_lemma false_wf add_nat_plus length_wf_nat nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff lelt_wf length_wf add-member-int_seg2 non_neg_length select-cons-tl int_seg_properties add-subtract-cancel int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality functionExtensionality setEquality equalityTransitivity equalitySymmetry because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination equalityElimination functionEquality universeEquality imageMemberEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    l-first(x.f[x];L)  \msim{}  inr  (\mlambda{}x.Ax)    supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}f[x])



Date html generated: 2017_04_17-AM-07_24_54
Last ObjectModification: 2017_02_27-PM-04_03_48

Theory : list_1


Home Index